1,294
Views
252
CrossRef citations to date
0
Altmetric
Articles

A review of the oxidation behaviour of structural alloys in steam

Pages 129-167 | Published online: 18 Jul 2013

References

  • I. G. Wright, and P. F. Tortorelli and M. Schiitze: ‘Oxide growth and exfoliation on alloys exposed to steam’, EPRI report no. 1013666, 2007.
  • R. Viswananthan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert: `US program on materials technology for ultra-supercritical coal power plants', J. Mater. Eng. Perform., 2005, 14, (3), 281–292.
  • R. Blum and J. Hald: ‘Benefit of advanced steam power plants’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers et al.), 1009-1016; 2002, Jiilich, Forschungszentrum Jfilich GmbH.
  • C. W. Elston and R. Sheppard: ‘First commercial supercritical pressure steam turbine built for Philo’, ASME paper no. 55-A-159, 1955.
  • C. B. Campbell, C. T. Frank and J. C. Spaks: ‘The Eddystone super-pressure unit’, ASME paper no. 56-1-156, 1956.
  • R. I. Jaffee: Electric Power Research Institute, private commu-nication to I. G. Wright, June 1984.
  • J. P. Shingledecker and I. G. Wright: ‘Evaluation of the materials technology required for a 760°C power steam boiler’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers et al.), 107-119; 2006, Jiilich, Schriften des Forschungszentrums Jiilich.
  • S. Kjaer: ‘Advances in PF plant, 1990 to 2010’, Proc. 6th Int. Charles Parsons Turbine Conf., (ed. A. Strang et al), 57-67; 2003, London, IOM.
  • R. Vanstone: ‘Advanced 700°C pulverized fuel power plant’, Proc. 5th Int. Charles Parsons Turbine Conf., (ed. A. Strang et al), 91-97; 2000, London, IOM.
  • K. Miyashita: ‘Overview of advanced steam plant development in Japan’, Proc. Inst. Mech. Eng. Conf. on ‘Advanced steam plant’, 17-30; 1997, London, Institute of Mechanical Engineers.
  • R. I. Jaffee: ‘Advanced pulverized coal power plant development’, EPRI project no. 1403-4, final report, 1984.
  • R. Viswanathan, R. Purgert and U. Rao: ‘Materials for ultra-supercritical coal-fired power plant boilers’, Proc. Conf. on ‘Materials for advanced power engineering’, 1109-1129; 2002, Jiilich, Forschungszentrum Mich GmbH.
  • S. R. J. Saunders, M. Monteiro and F. Rizzo: ‘The oxidation behaviour of metals and alloys at high temperatures in atmo-spheres containing water vapour: a review’, Frog. Mater. Set, 2008, 53, 775–837.
  • O. Kubaschewski and B. E. Hopkins: ‘Oxidation of metals and alloys’; 1962, London, Butterworths.
  • P. Kofstad: ‘High-temperature corrosion’, Chap. 6; 1988, London, Elsevier Applied Science Publishers, Ltd.
  • N. Birks, G. H. Meier and F. S. Pettit: ‘Introduction to the high-temperature oxidation of metals’, 2nd edn; 2006, Cambridge, Cambridge University Press.
  • D. J. Young: ‘High-temperature oxidation and corrosion of metals’; 2008, Oxford, Oxford Elsevier Science.
  • O. Kubaschewski and C. B. Alcock: ‘Metallurgical thermochem-istry’, 5th edn; 1979, Oxford, Pergamon Press.
  • M. H. Francombe: ‘Lattice changes in spinel-type iron chromites’, J. Phys. Chem. Solids, 1957, 3, 37–43.
  • F. Gabrielli and H. Schwevers: ‘Design factors and water chemistry practices—supercritical power cycles’, Proc. 15th Int. Conf. on ‘Properties of water and steam’, (ed. R. Span and I. Weber); 2008, Dusseldorf, VDT-Gesellschaft Energietechnik.
  • J. Zurek, M. Michalik, L. Singheiser and W. J. Quadakkers: ‘The effect of gas flow rate on the oxide scale morphology of a 10%Cr-ferritic steels in Ar-H20 and Ar-H2-H20 mixtures,’ Mater. Sei. Forum, 2006, 522-523, 155-162.
  • N. J. Cory and T. M. Herrington: ‘Kinetics of oxidation of ferrous alloys by superheated steam’, Oxid Met., 1987, 28, (5/6), 237–258.
  • L. Tomlinson and N. J. Cory: ‘Hydrogen emission during the steam oxidation of ferritic steels: kinetics and mechanism’, Corros. Sci., 1989, 29, (8), 939–965.
  • K. Nakagawa, Y. Matsunaga and T. Yanagisawa: ‘Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/ air dual environment’, Mater. High Temp., 2003, 20, (1), 67–73.
  • H. Asteman, J.-E. Svensson, L.-G. Johansson and M. Norell: ‘Indication of chromium oxide hydroxide evaporation during oxidation of 304 L at 873 K in the presence of 10% water vapor’, Oxid. Met., 1999, 52, 95–111.
  • H. Asteman, J.-E. Svensson, M. Norell and L.-G. Johansson: ‘Influence of water vapor and flow rate on the high-temperature oxidation of 304 L; effect of chromium oxide hydroxide evapora-tion’, Oxid Met., 2000, 54, 11–26.
  • C. Gindorf, K. Hilpert and L. Singheiser: ‘Determination of chromium vaporization rates of different interconnect alloys by transpiration experiments’, Proc. Conf. on ‘Solid oxide fuel cells (SOFC VII)’, (ed. H. Yokokawa and S. C. Singhal), Vol. 2001-16, 793-802; 2001, Pennington, NJ, Electrochemical Society.
  • E. J. Opila: ‘Volatility of common protective oxides in high-temperature water vapor: current understanding and unanswered questions’, Mater. Set Forum, 2004, 461-464, 765-773.
  • E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky and M. D. Allendorf: ‘Theoretical and experimental investigation of the thermochemistry of Cr02(OH)2(g)’, J. Phys. Chem. A, 2007, 111A, 1971–1980.
  • B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J-E. Svensson and L-G. Johansson: ‘Paralinear oxidation of chromium in 02+H20 environment at 600-700°C’, Oxid. Met., 2008, 70, 163–188.
  • G. R. Holcomb: ‘Calculation of reactive evaporation rates of chromia’, Oxid. Met., 2008, 69, 163–180.
  • G. R. Holcomb: ‘Steam oxidation and chromia evaporation in ultra-supercritical steam boilers and turbines’, J. Electrochem. Soc., 2009, 156, (9), C292—C297.
  • D. J. Young and B. A. Pint: ‘Chromium volatilization rates from Cr203 scales into flowing gases containing water vapor’, Oxid Met., 2006, 66, (3-4), 137–153.
  • S. J. Osgerby and W. J. Quadakkers: ‘The influence of laboratory test procedures on scale growth kinetics and microstructure during steam oxidation testing’, Mater. High Temp., 2005, 22, (1-2), 27–33.
  • W. R. Apblett, Jr: `Larson-miller parameter for scaling', Second quarterly progress report on EPRI project RP-644-1, 1976.
  • I. M. Rehn: ‘Corrosion problems in coal-fired boiler superheater and reheater tubes: steam-side oxidation and exfoliation’, EPRI report no. CS-1811, 1981.
  • S. R. Paterson, R. Moser and T. R. Rettig: Proc. EPRI-VGB Int. Conf. on ‘Interaction of iron-based materials with water and steam’, (ed. R. B. Dooley and A. Bursik), Heidelberg, Germany, June 1992, EPRI-VGB, EPRI report no. TR-102101, 8-1-8-5.
  • G. Heiermann, R.-U. Husemann, P. Hougaard, A. Kather and M. Knizia: `Dampferzeuger ffir fortgeschrittene Dampfparameter', VGB Kraftwerkstechnik, 1993, 73, (8), 678–689.
  • D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers: ‘Correlation between the microstructure, growth mechanism, and growth kinetics of alumina scales on a FeCrAlY alloy’, Met. Mater. Trans. A, 2007, 38A, (12), 2974–2983.
  • M. Montgomery and A. Karlsson: ‘Survey of oxidation in steamside conditions’, VGB Kraftswerkstechnik, 1995, 75, (3), 235–240.
  • Y. Watanabe, Y. S. Yi, T. Kondo, K. Inui, T. Kishinami, H. Kimura and M. Sato: Proc. 9th Int. Conf. on ‘Pressure vessel technology’, Sydney, Australia, April 2000, Elsevier, 545-552.
  • Y.-S. Yi, Y. Watanabe, T. Kondo, H. Kimura and M. Sato: ‘Oxidation rate of advanced heat-resistant steels for ultra-super-critical boilers in pressurized steam’, J. Pres. Ves. Technot, 2001, 123, 391–397.
  • M. G. Angell, S. K. Lister and A. Rudge: 'The effect of steam pressure on the oxidation behaviour of annealed 9Cr 1Mo boiler Atubing materials', Proc. 15th Int. Conf. on ‘Properties of water and steam’; 2008, Düsseldorf, VDI-Gesellschaft Energietechnik, paper no. Electro-I0.
  • C. T. Fujii and R. A. Meussner: ‘Oxide structures produced on iron-chromium alloys by a dissociative mechanism’, J. Electrochem. Soc., 1963, 110, (12), 1195–1204.
  • C. T. Fujii and R. A. Meussner: ‘The mechanism of the high-temperature oxidation of iron-chromium alloys in water vapor’, J. ElAectrochem. Soc., 1964, 111, (11), 1215–1221.
  • I. G. Wright and B. A. Pint: ‘An assessment of the high-temperature oxidation behavior of Fe-Cr steels in water vapor and steam’, NACE paper no. 02377, 2002.
  • V. Lépingle, G. Louis and D. Allué: ‘Comparison between current methods for measurement of high-temperature corrosion of boiler steels in steam environments’, Mater. ScL Forum, 2008, 595-598, 323-332.
  • J. C. Griess and W. A. Maxwell: ‘The long-term oxidation of selected alloys in superheated steam at 482 and 538°C’, Oak Ridge National Laboratory report no. ORNL-5771, 1981.
  • T. Sumida, T. Ikuno, N. Otsuka and T. Saburi: ‘High-temperature oxidation behavior of 2.25%Cr-1%Mo steel boiler tubes in long-term exposure to superheated steam’, Mater. Trans. JIM, 1995, 36, (11), 1372–1378.
  • N. Komai, F. Masuyama, S. Yamamoto and M. Igarashi: ‘10-year experience with T23 (2.25Cr-1.6W) and T122 (12Cr-0.4Mo-2W) in a power boiler’, EPRI-NPL Workshop on ‘Scale growth and exfoliation in steam plant’, National Physical Laboratory, Teddington, UK, 2003.
  • T. Muraki, M. Ohgami, N. Komai, K. Matsufuji, M. Katat, F. Masuyama, N. Naoi and T. Fujita: ‘Creep stability of high-strength 9%Cr Cr-W ferritic heat-resistant tube GR.92 after 15 years in service’, Proc. ASME/JSME PVP Conf. on ‘Experience with creep-strength enhanced ferritic steels and new and emerging computational methods’, (ed. Y.-Y. Wang et al), PVP-Vol. 476, 39-44; 2004, New York, ASME.
  • Y. Watanabe and H. Kikkawa: ‘Steam oxidation of creep strength-enhanced 9Cr ferritic steel: void formation in oxide scale and its relation to scale exfoliation’, Proc. ASME/JSME PVP Conf. on 'Experience with creep-strength enhanced ferritic steels and new and emerging computational methods'„ (ed. Y.-Y. Wang et al), PVP-Vol. 476, 93-96; 2004, New York, ASME.
  • C. L. Clark, J. J. B. Rutherford, A. B. Wilder and M. A. Cordovi: ‘Metallurgical examination of superheater tube alloys after six month's exposure at temperatures of 1100 to 1500°F’, Trans. ASME, J. Eng. Power, 1960, 82, (1), 35–67.
  • M. I. Manning and S. A. Richardson: ‘Strain-tolerance of steam-grown oxide scales’, CERL report no. RD/L/N 25/78, 1978.
  • M. H. Hurdus, L. Tomlinson and J. M. Titchmarsh: ‘Observation of oscillating reaction rates during isothermal oxidation of ferritic steels’, Oxid. Met., 1990, 34, (5/6), 429–464.
  • J. C. Nava-Paz and R. Knodler: ‘Steam-side oxidation of ferritic steels’, Proc. Conf. on ‘Materials for advanced power engineer-ing’, (ed. J. Lecomte-Beckers, F. Schubert and P. J. Ennis, 451-459; 1998, Jälich, Forschungszentrum Mich GmbH.
  • N. Otsuka, Y. Shida and H. Fujikawa: ‘Internal-external transition for the oxidation of Fe-Cr-Ni austenitic stainless steel’, Oxid. Met., 1989, 32, (1/2), 13–45.
  • Y. Fukuda, K. Tamura and K. Suzaki: ‘Effect of Cr and Si contents on the steam oxidation of high-Cr ferritic steels’, Proc. Int. Symp. on ‘Plant aging and life prediction of corrodible structures’, Sapporo, Japan, May 1995, NACE, 835-840.
  • H. Fujikawa and N. Otsuka: ‘Effect of Si content on the oxidation behavior of Cr-Mo steels in steam’, Nippon Kagaku Kaishi, 1998, 1, 53–59.
  • N. Nishimura, N. Komai, Y. Hirayama and F. Masuyama: ‘Japanese experiences with steam oxidation on advanced heat-resistant steel tubes in power boilers’, EPRI Workshop on ‘Scale growth and exfoliation in steam plant’, National Physical Laboratory, Teddington, UK, 2003.
  • M. Morinaga, Y. Murata, R. Hashizume and Y. Sawaragi: ‘Remarkable improvement in steam oxidation resistance due to the presence of sulfur in high-Cr ferritic steels’, ISIJ Int., 2001,41, (3), 314–316.
  • Y. Murata, M. Morinaga, R. Hashizume, Y. Sawaragi and M. Nakai: ‘Role of an impurity element on improvement in steam oxidation resistance on high-Cr ferritic steels’, Proc. 3rd EPRI Conf. on 'Advances in materials technologies for fossil power plants, Swansea, UK, April 2001, The Institute of Materials paper 91.
  • J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft and E. Metcalfe: ‘The spalling of steam-grown oxide from superheater and reheater tube steels’, EPRI report no. FP-686, 1978.
  • K. Haarmann, W. Schwenk, J. Venkateswarlu and M. Zschau: 'Hochtemperatur-korrosionsbeständigkeit des warmfesten Stahles XI OCrMoVNb91 (P91/T91) im Vergleich zu höher- und niedrig-legierten warmfesten ferritischen Chromstählen in Wasserdampf, VGB Kraftswerkstechnik, 1993, 73, 837–840.
  • K. Kusabiraki, H. Toki and K. Asami: ‘High-temperature oxidation of Fe-Cr alloys in Ar- 10% H20 atmosphere’, Tetsu-to-Hagane, 1988, 74, 863–878.
  • F. Masuyama: ‘Alloy development and materials issues with increasing steam temperature’, Proc. 4th Int. Conf. on ‘Advances in materials technology for fossil power plants’, 35-50; 2005, Materials Park, OH, ASM International; also EPRI Report 1011381.
  • I. G. Wright: ‘Oxidation of candidate alloys in steam at 17 bar’, Final Report on Phase 1 efforts in support of the US Consortium program on ‘boiler materials for ultra-supercritical coal power plants’, ORNL/TM-2009/232, November 2009.
  • R. Knodler and P. J. Ennis: ‘Oxidation of high-strength ferritic steels in steam at 650°C: preliminary results of COST 522 projects’, Proc. Baltica V Conf. on ‘Condition assessment of power plant’, Porvoo, Finland, June 2001, VTT, Vol. 1, 355-364.
  • I. G. Wright and A. S. Sabau: ‘Development of an integrated model to predict and control oxide scale exfoliation: exfoliation calculations for ferritic, austenitic, and fine-grained austenitic alloys — 2009 progress’, EPRI report no. 1017625, 2010.
  • J. C. Griess, J. M. Devan and W. A. Maxwell: ‘Effect of a high heat flux on the corrosion of 2.25Cr- 1Mo steel in superheated steam’, Mater. Perform., 1978, 17, 9.
  • A. Fry, J. Banks and S. Osgerby: ‘The influence of heat flux on the oxidation of boiler steels’, Proc. 7th Int. Charles Parsons Turbine Conf., (ed. A. Strang et al), 579-588; 2007, London, IOM Communications Ltd.
  • D. M. Glover: ‘Heat flux effects on oxidation rates and kinetics’, Corros. Set, 1980, 20, 1185–1193.
  • Y. Fukuda, K. Tamura and T. Sato: ‘Steam oxidation properties of high-Cr ferritic steels’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers, F. Schubert and P., 461-469; 1998, Jälich, Forschungszentrum Mich GmbH.
  • W. E. Ruther and S. Greenberg: ‘Corrosion of steels and nickel alloys in superheated steam’, J. Electrochem. Soc., 1964, 111, 1116–1121.
  • D. Caplan: ‘Effect of cold work on the oxidation of Fe-Cr alloys in water vapour at 600°C,’ Corros. Sci., 1966, 6, 509–515.
  • F. Abe, H. Araki, H. Yoshida, M. Okada and R. Watanabe: ‘The effect of grain size on the corrosion behavior of Inconel 600 in high-temperature steam’, Corros. Set, 1981, 21, 819.
  • F. Abe and H. Yoshida: ‘Corrosion behaviors of heat-resisting alloys in steam at 800°C and 40 atm pressure’, Z. Metallkunde, 1985, 76, (3), 219–225.
  • V. Lépingle, G. Louis, D. Petelot, B. Lefebvre and J. C. Vaillant: ‘High-temperature corrosion behavior of some boiler steels in pure water vapor’, Mater. ScL Forum, 2001, 369-372, 239-246.
  • H. Kutsumi, S. Muneki, T. Itagaki and F. Abe: ‘Steam oxidation of precipitate-strengthened, C-free martensitic alloys’, J. Jpn Inst. Met., 2002, 66, (10), 997–1003.
  • T. Ishitsuka, Y. Inoue and H. Ogawa: ‘Effect of silicon on the steam oxidation resistance of a 9% Cr heat-resistant steel’, Oxid. Met., 2004, 61, (1-2), 125–142.
  • J. P. Hammond, P. Patriaca, G. M. Slaughter and W. A. Maxwell: ‘Corrosion of Inconel 800 and Ni-base alloy weldments in steam’, Weld. J. Res. SuppL, June 1973, 268-s-280-s.
  • P. Banks, J. H. B. Lowick and P. Hurst: ‘Further results for the oxidation of ferritic steels in steam’, UKAEA report no. ND-R-10I2R, 1984.
  • W. J. Quadakkers, M. Thiele, P. J. Ennis, H. Teichmann and W. Schwarz: ‘Application limits of ferritic and austenitic materials in steam and simulated combustion gas of advanced fossil fuel-fired power plants’, Proc. EUROCORR '97, Trondheim, Norway, September 1997, EFCE Event No. 208, 35-40.
  • T. Itagaki, H. Kutsumi, M. Igarashi and F. Abe: ‘Steam oxidation properties of Pd added high Cr ferritic steels’, ISJI, 2000, 13, 1114-1115.
  • K. Kinoshita, T. Mimino and M. Shibata: ‘Oxidation of stainless steel tubing in high-temperature steam’, Trans. JISI, 1975, 15, 334–340.
  • H. E. McCoy and B. McNabb: ‘Corrosion of several metals in supercritical steam at 538°C’, Oak Ridge National Laboratory report no. ORNL/TM-5781, 1977.
  • P. Mayer and A. V. Manolescu: ‘The role of structural and compositional factors in corrosion of frritic steels in steam’, ‘High-temperature corrosion’, (ed. R. A. Rapp), 368-379; 1983, Houston, TX, NACE.
  • W. L. Pearl and G. P. Wozaldo: ‘Corrosion of carbon steel in simulated boiling water and superheat reactor environments’, Corrosion, 1965, 21, 260–267.
  • E. C. Potter and G. M. W. Mann: ‘Mechanism of magnetite growth on low-carbon steel in steam and aqueous solutions up to 550°C’, Proc. 2nd Int. Cong. on ‘Metallic corrosion’, 872-879; 1963, London, Butterworths.
  • D. C. Vreeland, G. G. Gaul and W. L. Pearl: ‘Corrosion of carbon steel and other steels in simulated boiling-water reactor environment: Phase II’, Corrosion, 1962, 18, 368t-377t.
  • L. W. Pinder: ‘Oxidation kinetics and scale morphology of mild steel and low-Cr alloy steels in N2-20%02 between 500 and 850°C’, Central Electricity Generating Board report no. SSD/ MID/R58/77, 1977.
  • V. Lépingle, G. Louis, D. Allué, B. Lefebvre and B. Vandenberghe: ‘Steam oxidation resistance of new 12%Cr steels: comparison with some other ferritic steels’, Corros. Sci., 2008, 50, (4), 1011–1019.
  • T. R. Allen, K. Sridharan, Y. Chen, L. Tan, X. Ren and A. Kruizenga: ‘Research and development on materials corrosion issues in supercritical water environment’, Proc. 15th Int. Conf. on ‘Properties of water and steam’, (ed. R. Span and I. Weber); 2008, Düsseldorf, VDT-Gesellschaft Energietechnik.
  • R. Viswanathan, J. Sarver and J. Tanzosh, ‘Boiler materials for ultra-supercritical coal power plants — steamside oxidation’, J. Mater. Eng. Pen, 2006, 15, (3), 255–274.
  • G. S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E. A. West, T. R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren and C. Pister: ‘Corrosion and stress corrosion cracking in supercritical water’, J. Nucl. Mater., 2007, 371, (1-3), 176–201.
  • D. R. Lide (ed.): ‘Handbook of chemistry and physics’, 73rd edn; 1993, Boca Raton, FL, CRC Press, Inc.
  • M. I. Manning and D. B. Meadowcroft: ‘Effects of tube creep strains on laminated scale formation in ferritic pressure tubing’, CERL report no. RD/L/R2012, 1980.
  • I. G. Wright, J. K. Howe and S. A. Sabau: ‘Morphological evolution of oxide scales grown on ferritic steels in steam’, Mater. High Temp., 2009, 26, (2), 105–111.
  • T. Ericsson: ‘Stratified oxides scale growing on two Cr-Ni steels oxidized in high-pressure steam at 800°C’, Oxid. Met., 1970,2, (2), 173–205.
  • T. Ericsson: ‘A study of the Cr-depleted surface layers formed on four Cr-Ni steels during oxidation in steam at 600°C and 800°C’, Oxid Met., 1970, 2, 401.
  • A. Atkinson and R. I. Taylor: ‘88Fe and 180 tracers in magnetite scales growing on iron and dilute iron-silicon alloys’, High Temp., High Pres., 1982, 14, 571–580.
  • N. J. Cory, T. M. Herrington and L. Tomlinson: ‘Hydrogen emission during the steam oxidation of ferritic steels: experimental technique’, Corros. Sci., 1988, 28, (4), 333–342.
  • P. Kofstad, I. G. Wright and G. C. Wood: ‘The role of water vapor in the oxidation of metals and alloys (oxidation in dry and wet air/02, in H2 + H20, and in H20)’, Oxid. Met., 1996, 45, (5/6), 529–620.
  • R. D. Shannon: ‘Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides’, Acta Cryst. A, 1976, 32A, 751–767.
  • G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz and S. Chevalier: ‘Inverse growth transport in thermal chromia scales on Fe-15Cr steels in oxygen and in water vapour and its effect on scale adhesion’, Scr. Mater., 2007, 57, 671–674.
  • S. Mrowec: ‘On the mechanism of high-temperature oxidation of metals and alloys’, Corros. Sci., 1967, 7, 563–578.
  • R. J. Hussey, G. I. Sproule, D. Caplan and M. J. Graham: ‘The growth and structure of oxide films formed on iron in 02 and CO2 at 550°C’, Oxid. Met., 1977, 11, 65–79.
  • F. H. Stott, I. G. Wright, T. Hodgkiess and G. C. Wood: ‘Factors affecting the high-temperature oxidation behavior of some dilute nickel- and cobalt-base alloys’, Oxid. Met., 1977, 11, 163.
  • A. Gala and H. J. Grabke: `Kinetik und mechanismus der oxidation und reduction von wiistite in wasserdampf-wasserstoff-gemischen', Archiv Eisenhiittenwesen, 1972, 6, 463–469.
  • H. J. Grabke and H. Viefhaus: ‘Surface composititon of wilstite’, Phys. Chem., 1980, 84, 152–159.
  • J. Thpfer, S. Aggarwal and R. Dieckmann: ‘Point defects and cation tracer diffusion in (CrxFei-03-604 spinels’, Solid State Ionics, 1995, 81, (3-4), 251–266.
  • C. Wagner: ‘The formation of composite scales consisting of oxides of different metals’, J. Electrochem. Soc., 1956, 103, 627–633.
  • A. Atkinson: ‘A theoretical analysis of the oxidation of Fe-Si alloys’, Corros. Sci., 1982, 22, 87–102.
  • J. Stringer, D. P. Whittle, I. G. Wright, V. Nagarajan and M. E. El-Dahshan: ‘A novel method for designing 5i02-forming alloys’, Proc. 8th Int. Cong. on ‘Metallic corrosion’, Mainz, Germany, September 1981, DECHEMA.
  • M. P. Brady, B. Gleeson and I. G. Wright: ‘Alloy design strategies for promoting protective oxide-scale formation’, JOM, 2000, 52, (1), 16–21.
  • J. Zurek, L. Nieto-Hierro, P. J. Ennis, L. Singheiser and W. J. Quadakkers: ‘Oxidation behavior of ferritic and austenitic steels in simulated steam environments’, Proc. 4th Int. Conf. on ‘Advances in materials technology for fossil power plants’, 371-387; 2005, Materials Park, OH, ASM International.
  • J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers: ‘Anomalous temperature-dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550-650°C’, Corros. Sci., 2004, 46, (9), 2301–2317.
  • T. Itagaki, K. Nakazato, H. Kutsumi and S. Torizuka: ‘Steam oxidation-resistant protective layer on ferritic steels formed by heavy deformation and preoxidation treatment’, J. Jpn Inst. Met., 2003, 67, (4), 189–192.
  • D. T. Hoelzer, B. A. Pint and I. G. Wright: ‘A microstructural study of the oxide scale formation on ODS Fe-13Cr steel’, J. Nucl. Mater., 2000, 283–287, 1306-1310.
  • J. Ehlers, E. J. Smaardijk, H. Penkalla, A. K. Tyagi, L. Singheiser and W. J. Quadakkers: ‘Effect of steel composition on the bell shaped temperature dependence of oxidation in water vapor-containing environments’, Proc. 14th Int. Corros. Cong., Capetown, South Africa, September 1999, International Corrosion Council, 336-340.
  • P. N. Rowley, R. Brydson, J. Little, S. R. J. Saunders, H. Sauer and W. Engel: ‘The effects of boron additions on the oxidation of Fe-Cr alloys in high-temperature steam: analytical results and mechanisms’, Oxid. Met., 1991, 35, (5/6), 375–395.
  • A. Czyrska-Filemonowicz, K. Spiradek-Hahn, K. Bryla, H. Firganek, A. Xielinska-Lipiec and P. J. Ennis: ‘Transmission electron microscopy and boron trace autoradiography investiga-tion of precipitates in creep-deformed 9%Cr steels’, Proc. 4th Int. Conf. ‘Advances in materials technology for fossil power plants’, (ed. R. Viswanathan, D. Gandy and K. Coleman, 1299-1312; 2005, Materials Park, OH, ASM International.
  • K. Hayashi, T. Kojima, Y. Minami and A. Tohyama: ‘Development of 12%Cr heat-resistant steel plate (TEMPALOY F-12M) for USC boiler’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers, F. Schubert and P., 411-420; 1998, Mich, Forschungszentrum Mich GmbH.
  • A. Fleming, R. V. Maskell, L. W. Buchanan and T. Wilson: ‘Material developments for supercritical boilers and pipework’, in ‘Materials for high-temperature power generation and process plant applications’, (ed. A. Strang), Book no. 728, 32-77; 2000, London, IOM.
  • H. Kutsumi, T. Itagaki and F. Abe: ‘Effect of trace amount of S on the steam oxidation behavior for mod. 9Cr-lMo steels’, Tetsu-to-Hagane, 2002, 86, (9), 42–47.
  • A. P. Greeff, C. W. Louw, J. J. Terblans and H. C. Swart: ‘The influence of S segregation on the oxidation of industrial FeCrMo steel’, Corros. Sci., 2000, 42, 991–1004.
  • M. Nakai, Y. Murata, M. Morinaga and R. Hashizume: ‘Dependence of high-temperature steam oxidation resistance on the stability of the chromium sulfide in high-Cr, heat-resistant steels’, Proc. 4th Int. Conf. on ‘Advances in materials technology for fossil power plants’, (ed. R. Viswanathan, D. Gandy and K. Coleman, EPRI Report No. 1011381420-427; 2005, Materials Park, OH, ASM International.
  • Y. Murata, M. Morinaga, N. Inagaki and M. Nakai: ‘Mass loss of Cr203 during exposure to steam at 923 K and its suppression by sulfur doping’, Jpn Inst. Met., 2002, 43, (5) 258–259.
  • J. Henry, G. Thou and E. Ward: ‘Lessons from the past: materials-related issues in an ultra-supercritical boiler at the Eddystone plant’, Mater. High Temp., 2007, 24, (4), 249–258.
  • J. P. Menzo and D. W. Rahoi: ‘Overcoming coal-ash corrosion in utility boilers’, Proc. ASME Winter Annual Meet., New York, NY, USA, December 1979, ASME, paper no. 79-Wa/Cd-3,.
  • T. P. Flatley, E. P. Latham and C. W. Morris: `CEGB experience with co-extruded tubes for superheated and evaporative sections of PF-fired boilers', ‘Advances in material technology for fossil power plants’, (ed. R. Viswanathan and R. I. Jaffee), 219-229; 1987, Metals Park, OH, ASM International.
  • T. Kan, Y. Sawaragi, Y. Yamadera and H. Okada: ‘Properties and experiences of a new austenitic stainless steel Super304H (0.1C-18Cr-9Ni-3Cu-Nb-N) for boiler tube application’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers, F. Schubert 441-450; 1998, Mich, Forschungszentrum Mich GmbH.
  • Y. Nishiyama, Y. Hayaso and N. Otsuka: `Corrosion resistant boiler tube materials for advanced coal fired steam generating systems', Proc. 28th Int. Conf. on ‘Coal utilization’, Clearwater, FL, USA, March 2003, Coal Technology Association.
  • S. Jansson, W. Hubner, G. 0stberg and M. de Pourbaix: ‘Oxidation resistance of some stainless steels and nickel-based alloys in high-temperature water and steam’, Br. Corros. J., 1969, 4, 21.
  • H. Matsuo, Y. Nishiyama and Y. Yamadera: ‘Steam oxidation properties of fine-grained steels’, Proc. 4th Int. Conf. on ‘Advances in materials for fossil power plants’, (ed. R. Viswanathan, D. Gandy and 441-450; 2005, Materials Park, OH, ASM International.
  • H. Haruyama, H. Kutsumi, S. Kuroda and F. Abe: ‘Effects of shot peening and pre-oxidation treatment in air on steam oxidation resistance of mod. 9Cr-lMo steel’, Proc. 4th Int. Conf. on ‘Advances in materials technology for fossil power plants’, (ed. R. Viswanathan, D. Gandy and EPRI Report No. 1011381, 412-419; 2005, Materials Park, OH, ASM International.
  • W. E. Ruther, R. R. Schlueter, R. H. Lee and R. K. Hart: ‘Corrosion behavior of steels and nickel alloys in superheated steam’, Corrosion, 1965, 22, 147–155.
  • A. M. Grishin, V. G. Perkov, V. P. Sentyurev and Y. Y. Yashchenko: ‘Oxidation of steels and alloys in a steam flow at 600-650°C’, Therm. Eng., 1969, 16, 121.
  • M. Warzee, J. Hennaut, M. Maurice, C. Sonnen, J. Waty and P. Berge: ‘Effect of surface treatment on the corrosion of stainless steels, in high-temperature water and steam’, J. Electrochem. Soc., 1965, 112, 670.
  • K. Kinoshita, T. Mimino and M. Shibata: ‘Steam oxidation of stainless steel tubing: effect of cold work on its prevention’, NKK Technical Bulletin TD-49-008, 1974.
  • Y. Shida, J. Murayama, N. Maruyama and H. Fujikawa: ‘Study on the Si-bearing 18Cr ferritic stainless-steel for heater: 1. Effects of H20 and 02 contents in atmosphere on the oxidation resistance of ferritic stainless-steels’, Trans. Iron Steel Inst. Jpn, 1984, 24, (1), B22—B22.
  • T. Sumida, T. Ikuno, N. Otsuka and T. Saburi: ‘High-temperature oxidation behavior of SUS321Hand 5U5347H boiler tubes in long-term exposure to superheated steam’, J. Jpn Inst. Met., 1995, 59, (11), 1149–1156.
  • J. C. Griess, J. M. Devan and W. A. Maxwell: ‘Long term corrosion of Cr-Mo steels in superheated steam at 482 and 538°C’, Mater. Perform., 1982, 21, 18–24.
  • M. Sun, X. Wu, Z. Zhang and E-H. Han: ‘Oxidation of 316 stainless steel in supercritical water’, Corros. Sci., 2009, 51, (5), 1069–1072.
  • A. M. Edwards, P. J. Jackson and L. S. Howes: 'Operational trial of superheater steels in a CEGB pulverized-fuel-fired boiler burning East Midlands coal', J. Inst. Fuel, 1962, (1) 16-28.
  • N. Otsuka and H. Fujikawa: ‘Scaling of austenitic stainless steels and Ni-base alloys in high-temperature steam at 973 K’, Corrosion, 1991, 47, (4), 240–248.
  • J. P. Schingledecker, M. L. Santella, D. F. Wilson and I. G. Wright: ‘State of knowledge for advanced austenitics: progress update 2009’, EPRI report no. 1015809, 2009.
  • M. Montgomery, O. H. Larsen, S. A. Jensen and O. Biede: `Field investigation of steamside oxidation for TP347H', Mater. Sci. Forum, 2004, 461–464, 1007-1014.
  • A. Hughes, R. B. Dooley and S. Paterson: ‘Oxide exfoliation of 347HFG in high-temperature boilers’, Proc. 7th Int. Conf. Exhibit. on ‘Operating pressure equipment’, Sydney, Australia, 2003, Institute of Materials Engineering Australasia Ltd.
  • J. Jianmin, M. Montgomery, O. H. Larsen and S. A. Jensen: 'Investigation on steam oxidation behaviour of TP347HFG, Part 1: Exposure at 256 bar', Mater. Corros., 2005, 56, (7), 459–467.
  • J. Jianmin, M. Montgomery, O. H. Larsen and S. A. Jensen: 'Investigation on steam oxidation behaviour of TP347HFG, Part 2: exposure at 91 bar', Mater. Corros., 2005, 56, (8), 542–549.
  • E. Essuman, G. H. Meier, J. Zurek, M. Hansel, L. Singheiser and W. J. Quadakkers: ‘Enhanced internal oxidation as a reason for breakdown of protective chromia scales on FeCr alloys in water vapour-containing gases’, Mater. Set Forum, 2008, 595-598, 699-706.
  • T. Norby: `Hydrogen defects in inorganic solids', in ‘Selected topics in high-temperature chemistry: defect chemistry of solids’, (ed. O. Johannessen and A. G. Andersen), 101; 1989, Amsterdam, Elsevier.
  • W. L. Pearl, E. G. Brush, G. G. Gaul and S. Leistikow: ‘General corrosion of Inconel Alloy 625 in simulated superheat reactor environment’, Nucl. AppL, 1967, 3, 418–432.
  • G. R. Holcomb, S. D. Cramer, B. S. Covino, Jr, S. J. Bullard and M. Ziomek-Moroz: ‘Ultra-supercritical steamside oxidation’, Proc. 4th Int. Conf. on ‘Advances in materials for fossil power plants’, (ed. R. Viswanathan, D. Gandy and 451-462; 2005, Materials Park, OH, ASM International.
  • COMTES 700: Component test facility for a 700°C power plant installed in Scholven power plant, available at: http://www. comtes700.org/index.xhtml
  • J. M. Tanzosh, D. J. deVault and W. R. Mohn: ‘Engineering design and fabrication of ultrasupercritical test loops’, Proc. 4th Int. Conf. on ‘Advances in materials for fossil power plants’, (ed. R. Viswanathan, D. Gandy and 323-336; 2005, Materials Park, OH, ASM International.
  • S. Osgerby and A. Fry: ‘Assessment of the steam oxidation behavior of high-temperature plant materials’, Proc. 4th Int. Conf. on ‘Advances in materials for fossil power plants’, (ed. R. Viswanathan, D. Gandy and 388-401; 2005, Materials Park, OH, ASM International.
  • F. Abe: ‘Metallurgy for long-term stabilization of ferritic steels for thick section boiler components in USC power plant at 650°C’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers et al), 965-980; 2006, Mich, Schriften des Forschungszentrums Mich.
  • A. Aguero: ‘Coatings for protection of high-temperature new genera-tion steam plant components: a review’, Proc. Conf. on ‘Materials for advanced power engineering’, (ed. J. Lecomte-Beckers et al), 949-963; 2006, Mich, Schriften des Forschungszentrums Mich.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.