13,047
Views
204
CrossRef citations to date
0
Altmetric
Original Article

Self-healing polymers and composites

Pages 317-346 | Published online: 18 Jul 2013

References

  • National Research Council: ‘Going to extremes: meeting the emerging demand for durable polymer matrix composites’, National Research Council, Washington, DC, USA , 2005.
  • D. R. Mulville and I. Wolock: ‘Failure of polymer composites’, in ‘Developments in polymer fracture-1’, (ed. E. H. Andrews), 263-316; 1979, London, Applied Science Publishers.
  • E. S. Greenhalgh (ed.): ‘Failure analysis and fractography of polymer composites’; 2009, Cambridge, Woodhead Publishing Ltd.
  • L. Hollaway: ‘Polymer composites for civil and structural engineering’; 1993, London, Blackie Academic and Professional.
  • C. Sourtis and P. W. R. Beaumont (eds.): 'Multi-scale modeling of composite material systems: the art of predictive damage modelling'; 2005, Cambridge, UK, Woodhead Publishing Ltd.
  • T. K. O'Brien: ‘Damage and strength of composite materials: trends, predictions, and challenges’, NASA Conf. Publ., 1994, 3271, 145–158.
  • R. B. Heslehurst: 'Challenges in the repair of composite structures —Part I', SAMPE J., 1997, 33, 11–16.
  • R. B. Heslehurst: 'Challenges in the repair of composite structures—Part II', SAMPE J., 1997, 33, 16–21.
  • M. F. Ashby, L. J. Gibson, U. Wegst and R. Olive: ‘The mechanical properties of natural materials. I. Material property charts’, Proc. R Soc. Lond Ser. A, 1995, 450A, 123–140.
  • K. A. Williams, D. R. Dreyer and C. W. Bielawski: ‘The underlying chemistry of self-healing materials’, MRS Bull., 2008, 33, 759–765.
  • R. S. Trask, H. R. Williams and I. P. Bond: ‘Self-healing polymer composite: mimicking nature to enhance performance’, Bioinsp. Biomim., 2007, 2, 1–9.
  • D. Y. Wu, S. Meure and D. Solomon: ‘Self-healing polymeric materials: a review of recent developments’, Prog. Polym. Sci, 2008, 33, 479–522.
  • S. van der Zwaag, N. H. van Dijk, H. M. Jonkers, S. D. Mookhoek and W. G. Sloof: 'Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character', Philos. Trans. R. Soc. A, 2009, 367A, 1689–1704.
  • M. R. Kessler: ‘Self-healing: a new paradigm in materials design’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2007, 221G, 479–495.
  • E. B. Murphy and F. Wudl: ‘The world of smart healable materials’, Prog. Polym. Set, 2010, 35, 223–251.
  • Y. C. Yuan, T. Yin, M. Z. Rong and M. Q. Zhang: ‘Self healing in polymers and polymer composites. Concepts, realization and outlook: a review’, Express Polym. Lett., 2008, 2, 238–250.
  • S. R. White, M. M. Caruso and J. S. Moore: ‘Autonomic healing of polymers’, MRS Bull, 2008, 33, 766–769.
  • D. Jung, A. Hegeman, N. R. Sottos, P. H. Geubelle and S. R. White: ‘Self-healing composites using embedded microspheres’, Am. Soc. Mech. Eng., Mater. Div. (Publ.), 1997, 80, 265–275.
  • L. D. Stephenson: Personal communication regarding work done in the late 1990s, US Army Engineer Research and Development Center-Construction Engineering Research Laboratory (ERDC-CERL), Champaign, IL, USA, 2008.
  • C. W. Bielawski and R. H. Grubbs: ‘Living ring-opening metathesis polymerization’, Prog. Polym. Set, 2007, 32, 1–29.
  • S. T. Nguyen, L. K Johnson and R. H. Grubbs: ‘Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media’, J. Am. Chem. Soc., 1992, 114, 3974–3975.
  • M. R. Kessler and S. R. White: ‘Cure kinetics of the ring-opening metathesis polymerization of dicyclopentadiene’, J. Polym. Set A, 2002, 40A, 2373–2383.
  • S. T. Nguyen and R. H. Grubbs: ‘Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysis’, J. Am. Chem. Soc., 1993, 115, 9858–9859.
  • E. L. Dias, S. T. Nguyen and R. H. Grubbs: ‘Well-defined ruthenium olefin metathesis catalysts: mechanism and activity’, J. Am. Chem. Soc., 1997, 119, 3887–3897.
  • T. M. Trnka and R. H. Grubbs: ‘The development of L2X2RuCHR olefin metathesis catalysts: an organometallic success story’, Ace. Chem. Res., 2001, 34, 18–29.
  • M. S. Sanford, J. A. Love and R. H. Grubbs: ‘Mechanism and activity of ruthenium olefin metathesis catalysis’, J. Am. Chem. Soc., 2001, 123, 6543–6554.
  • R. H. Grubbs: ‘Olefin-metathesis catalysts for the preparation of molecules and materials’, Angew. Chem. Int. Ed:, 2006, 45, 3760–3765.
  • S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan: ‘Autonomic healing of polymer composites’, Nature, 2001, 409, 794–797.
  • E. N. Brown, N. R. Sottos and S. R. White: ‘Fracture testing of self-healing polymer composite’, Exp. Mech., 2002, 42, 372–379.
  • E. N. Brown, S. R. White and N. R. Sottos: ‘Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite — Part I: Manual infiltration’, Compos. Set Technot, 2005, 65, 2466–2473.
  • E. N. Brown, S. R. White and N. R. Sottos: ‘Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite — Part II: In situ self-healing’, Compos. Sci Technot, 2005, 65, 2474–2480.
  • A. S. Jones, J. D. Rule, J. S. Moore, N. R. Sottos and S. R. White: ‘Life extension of self-healing polymers with rapidly growing fatigue cracks’, J. R Soc. Interface, 2007, 4, 395–403.
  • G. Lewis, B. Wellborn, L. Jones II and P. Biggs: ‘A room-temperature autonomically-healing PMMA bone cement: influ-ence of composition on fatigue crack propagation rate’, J. Appl. Biomater. Biomech., 2009, 7, 90–96.
  • P. Biggs, L. Jones II, B. Wellborn and G. Lewis: ‘A self-healing PMMA bone cement: Influence of crystal size of Grubbs’ catalyst', IFMBE Proc., 2009, 14, 147–150.
  • G. O. Wilson, J. S. Moore, S. R. White, N. R. Sottos and H. M. Andersson: ‘Autnomic healing of epoxy vinyl esters via ring opening metathesis polymerization’, Adv. Funct. Mater., 2008, 18, 44–52.
  • M. D. Chipara, M. Chipara, E. Shansky and J. M. Zaleski, ‘Self-healing of high elasticity block copolymers’, Polym. Adv. Technot, 2009, 20, 427–431
  • M. Z. Rong, M. Q. Zhang and W. Zhang: ‘A novel self-healing epoxy system with microencapsulated epoxy and imidazole curing agent’, Adv. Compos. Lett., 2007, 16, 167–172.
  • T. Yin, M. Z. Rong, M. Q. Zhang and G. C. Yang: ‘Self-healing epoxy composites — preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent’, Compos. Set Technol, 2007, 67, 201–212.
  • T. Yin, M. Z. Rong, M. Q. Zhang and J. Q. Zhao: ‘Durability of self-healing woven glass fabric/epoxy composites’, Smart Mater. Struct., 2009, 18, 1–7.
  • T. Yin, M. Z. Rong and M. Q. Zhang: ‘Self-healing of cracks in epoxy composites’, Adv. Mater. Res., 2008, 47-50, 282-285.
  • T. Yin, L. Zhou, M. Z. Rong and M. Q. Zhang: ‘Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent’, Smart Mater. Struct., 2008, 17, 1–8.
  • T. Yin, M. Z. Rong, J. Wu, H. Chen and M. Q.: ‘Healing of impact damage in woven glass fabric reinforced epoxy compo-sites’, Composites A, 2008, 39A, 1479–1487.
  • Y. C. Yuan, M. Z. Rong, M. Q. Zhang, J. Chen, G. C. Yang and X. M. Li: ‘Self-healing polymeric materials using epoxy/mercap-tan as the healant’, Macromolecules, 2008, 41, 5197-5202.
  • D. Z. Xiao, Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘Self-healing epoxy based on cationic chain polymerization’, Polymer, 2009, 50, 2967-2975.
  • D. Z. Xiao, Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘A facile strategy for preparing self-healing polymer composites by incorporation of cationic catalyst-loaded vegetable fibers’, Adv. Funct. Mater., 2009, 19, 2289–2296.
  • M. W. Keller, S. R. White and N. R. Sottos: ‘A self-healing poly(dimethyl siloxane) elastomer’, Adv. Funct. Mater., 2007, 17, 2399–2404.
  • M. W. Keller, S. R. White and N. R. Sottos: ‘Torsion fatigue response of self-healing poly(dimethyl siloxane) elastomers’, Polymer, 2008, 49, 3136-3145.
  • H. T. Yang, Z. P. Fang, X. Y. Fang and L. F. Tong: ‘A novel glass fiber-supported platinum catalyst for self-healing polymer composites: structure and reactivity’, Chin. J. Gated, 2007, 28, 947–952.
  • B. A. Beiermann, M. W. Keller and N. R. Sottos: ‘Self-healing flexible laminates for resealing of puncture damage’, Smart Mater. Struct., 2009, 18, 1–7.
  • D. G. Shchukin and H. Mohwald: ‘Self-repairing coatings containing active nanoreservoirs’, Small, 2007, 3, 926-943. Si. D. V. Andreeva and D. G. Shchukin: ‘Smart self-repairing protective coatings’, Mater. Today, 2008, 11, 24–30.
  • A. Kumar, L. D. Stephenson and J. N. Murray: ‘Self-healing coatings for steel’, Prog. Org. Coat., 2006, 55, 244–253.
  • V. Sauvant-Moynot, S. Gonzales and J. Kittel: ‘Self-healing coating: an alternative route for anticorrosion protection’, Prog. Org. Coat., 2008, 63, 307–315.
  • D. G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M. G. S. Ferreira and H. Mohwald: 'Layer-by-layer assembled nanocontainers for self-healing corrosion protection', Adv. Mater., 2006, 18, 1672–1678.
  • D. V. Andreeva, D. Fix, H. Mohwald and D. G. Shchukin: ‘Self-healing anticorrosion coatings based on pH-sensitive polyelec-trolyte/inhibitor sandwichlike nanostructures’, Adv. Mater., 2008, 18, 2789–2794.
  • E. V. Skorb, A. G. Skirtach, D. V. Sviridov, D. G. Shchukin and H. Mohwald: `Laser-controllable coatings for corrosion protec-tion', ACS Nano, 2009, 3, 1753-1760.
  • X. Liu, X. Sheng, J. K. Lee and M. R. Kessler: ‘Isothermal cure characterization of dicyclopentadiene the glass transition tem-perature and conversion’, J. Therm. Anal. Calorim., 2007, 89, 453–457.
  • E. N. Brown: ‘Fracture and fatigue of a self-healing polymer composite material’, PhD thesis, University of Illinois at Urbana–Champaign, Champaign, IL, USA, 2003.
  • G. L. Nelson and C.-L. Kuo: ‘An improved procedure for the preparation of exo-dicyclopentadiene’, Synthesis, 1975, 105, 105–106.
  • J. D. Rule and J. S. Moore: ‘ROMP reactivity endo- and exo-dicyclopentadiene’, Macromolecules, 2002, 35, 7878-7882.
  • T. C. Mauldin, J. D. Rule, N. R. Sottos, S. R. White and J. S. Moore: ‘Self-healing kinetics and stereoisomers of dicyclopenta-diene’, J. R Soc. Interface, 2007, 4, 389–393.
  • Y. C. Yuan, M. Z. Rong, M. Q. Zhang and G. C. Yang: ‘Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant’, Polymer, 2009, 50, 5771-5781.
  • J. K. Lee, S. J. Hong, X. Liu and S. H. Yoon: ‘Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules’, Macromot Res., 2004, 12, 478–483.
  • G. E. Larin, N. Bernklau, M. R. Kessler and J. C. DiCesare: `Rheokinetics of ring-opening metathesis polymerization of norbornene-based monomers intended for self-healing applica-tions', Polym. Eng. Sci., 2006, 46, 1804-1811.
  • J. K. Lee, X. Liu, S. H. Yoon and M. R. Kessler: ‘Thermal analysis of ring-opening metathesis polymerized healing agents’, J. Polym. Sci. B, 2007, 45B, 1771–1780.
  • X. Liu, J. K. Lee, S. H. Yoon and M. R. Kessler: ‘Characterization of diene monomers as healing agents for autonomic damage repair’, J. AppL Polym. Sci., 2006, 101, 1266–1272.
  • X. Liu, X. Sheng, M. R. Kessler and J. K. Lee: `Rheokinetic evaluation of self-healing agents polymerized by Grubbs' catalyst embedded in various thermosetting systems', Compos. Sci. TechnoL, 2009, 69, 2101–2107.
  • X. Sheng, M. R. Kessler and J. K. Lee: ‘The influence of cross-linking agents on ring-opening metathesis polymerized thermo-sets’, J. Therm. Anal. Calorim., 2007, 89, 459–464.
  • X. Sheng, J. K. Lee and M. R. Kessler: ‘Influence of cross-link density on the properties of ROMP thermosets’, Polymer, 2009, 50, 1264-1269.
  • W. Jeong and M. R. Kessler: ‘Toughness enhancement in ROMP functionalized carbon nanotube/polydicyclopentadiene compo-sites’, Chem. Mater., 2008, 20, 7060–7068.
  • W. Jeong and M. R. Kessler: ‘Effect of functionalized MWCNTs on the thermo-mechanical properties of poly(5-ethylidene-2-norbornene) composites produced by ring-opening metathesis polymerization’, Carbon, 2009, 47, 2406-2412.
  • J. D. Rule, N. R. Sottos and S. R. White: ‘Effect of microcapsule size on the performance of self-healing polymers’, Polymer, 2007, 48, 3520-3529.
  • D. S. Burton, X. Gao and L. C. Brinson: ‘Finite element simulation of a self-healing shape memory alloy composite’, Mech. Mater., 2006, 38, 525–537.
  • S. Araki, H. Ono and K. Saito: `Micromechanical analysisof crack closure mechanism for intelligent material containing TiNi fibers', JSME Int. J. A, 2002, 45A, 208–216.
  • K. Hamada, F. Kawano, and K. Asaoka: ‘Shape recovery of shape memory alloy fiber embedded resin matrix smart composite after crack repair’, Dent. Mater. J., 2003, 22, 160–167.
  • X. Wang: ‘Shape memory allow volume fraction of pre-stretched shape memory allow wire-reinforced composites for structural damage repair’, Smart Mater. Struct., 2002, 11, 590–595.
  • G. Li and M. John: ‘A self-healing smart syntactic foam under multiple impacts’, Compos. Sci. Technot, 2008, 68, 3337–3343.
  • G. Li and D. Nettles: `Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam', Polymer, 2010, 51, 755–762.
  • E. L. Kirkby, J. D. Rule, V. J. Michaud, N. R. Sottos, S. R. White and J.-A. E. Manson: ‘Embedded shape-memory allow wires for improved performance of self-healing polymers’, Adv. Funct. Mater., 2008, 18, 2253–2260.
  • E. L. Kirkby, V. J. Michaud, J.-A. E. Manson, N. R. Sottos and S. R. White: ‘Performance of self-healing epoxy with micro-encapsulated healing agent and shape memory allow wires’, Polymer, 2009, 50, 5533-5538.
  • A. S. Jones, J. D. Rule, J. S. Moore, S. R. White and N. R. Sottos: ‘Catalyst morphology and dissolution kinetics of self-healing polymers’, Chem. Mater., 2006, 18, 1312–1317.
  • G. O. Wilson, M. M. Caruso, N. T. Reimer, S. R. White, N. R. Sottos and J. S. Moore: ‘Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing appli-cations’, Chem. Mater., 2008, 20, 3288–3297.
  • T. C. Mauldin and M. R. Kessler: ‘Enhanced bulk catalyst dissolution for self-healing materials’, J. Mater. Chem., 2010, 20, 4198.
  • J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White and J. S. Moore: Wax-protected catalyst microspheres for efficient self-healing materials', Adv. Mater., 2005, 17, 205–208.
  • J. M. Kamphaus, J. D. Rule, J. S. Moore, N. R. Sottos and S. R. White: ‘A new self-healing epoxy with tungsten (VI) chloride catalyst’, J. R. Soc. Interface, 2008, 5, 95–103.
  • E. N. Brown, M. R. Kessler, N. R. Sottos and S. R. White: 'In situ poly(urea—formaldehyde) microencapsulation of dicyclopenta-diene', J. Microencapsulation, 2003, 20, 719–730.
  • R. G. Wang, W. B. Liu, H. Y. Li, X. D. He and F. H. Zhang: ‘Preparation and characterization of properties of microcapsules for polymeric composites self-repairing’, Key Eng. Mater., 2007, 334-335, 569-572.
  • M. W. Keller and N. R. Sottos: ‘Mechanical properties of microcapsules used in a self-healing polymer’, Exp. Mech., 2006, 46, 725–733.
  • B. J. Blaiszik, N. R. Sottos and S. R. White: Nanocapsules for self-healing materials', Compos. Sci. Technot, 2008, 68, 978–986.
  • H. Li, R. Wang, H. Hu and W. Liu: ‘Surface modification of self-healing poly(urea—formaldehyde) microcapsules using silane-coupling agent’, AppL Surf Sci, 2008, 255, 1894-1900.
  • R. Wang, H. Li, H. Hu, X. He and W. Liu: ‘Preparation and characterization of self-healing microcapsules with poly(urea—formaldehyde) grafted epoxy functional group shell’, J. AppL Polym. Sci., 2009, 113, 1501–1506.
  • S. D. Mookhoek, B. J. Blaiszik, H. R. Fischer, N. R. Sottos, S. R. White and S. van der Zwaag: ‘Peripherally decorated binary microcapsules containing two liquids’, J. Mater. Chem, 2008, 18, 5390–5394.
  • S. D. Mookhoek: Personal communication, Delft University of Technology, Delft, The Netherlands, 2009.
  • L. Yuan, G.-Z. Liang and J.-Q. Xie: ‘Synthesis and characteriza-tion of microencapsulated dicyclopentadiene with melamine—formaldehyde resins’, Colloid Polym. Sci., 2007, 285, 781–791.
  • J. Hu, H.-Q. Chen and Z. Zhang: ‘Mechanical properties of melamine formaldehyde microcapsules for self-healing materials’, Mater. Chem. Phys., 2009, 118, 63–70.
  • X. Liu, X. Sheng, J. K. Lee and M. R. Kessler: ‘Synthesis and characterization of melamine-urea-formaldehyde microcapsules containing ENB-based self-healing agents’, Macromot Mater. Eng., 2009, 294, 389–395.
  • S. Cosco, V. Ambrogi, P. Musto and C. Carfagna: ‘Properties of poly(urea—formaldehyde) microcapsules containing an epoxy resin’, J. Appl. Polym. Sci., 2007, 105, 1400–1411.
  • L. Yuan, G.-Z. Liang, J.-Q. Xie, L. Li and J. Guo: ‘The permeability and stability of microencapsulated epoxy resins’, J. Mater. Sci., 2007, 42, 4390–4397.
  • L. Yuan, A. Gu and G. Liang: ‘Preparation and properties of poly(urea—formaldehyde) microcapsules filled with epoxy resins’, Mater. Chem. Phys., 2008, 110, 417–425.
  • T. Zhang, M. Zhang, X.-M. Tong, F. Chen and J.-H. Qiu: ‘Optimal preparation and characterization of poly(urea—formal-dehyde) microcapsules’, J. AppL Polym. Set, 2010, 115, 2162–2169.
  • D. S. Xiao, M. Z. Rong and M. Q. Zhang: ‘A novel method for preparing epoxy-containing microcapsules via UV irradiation-induced interfacial copolymerization in emulsions’, Polymer, 2007, 48, 4765-4776.
  • D. S. Xiao, Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘Hollow polymeric microcapsules: preparation, characterization and appli-cation in holding boron trifluoride diethyl etherate’, Polymer, 2009, 50, 560–568.
  • B. J. Blaiszik, M. M. Caruso, D. A. McIlroy, J. S. Moore, S. R. White and N. R. Sottos: `Microcapsules filled with reactive solutions for self-healing materials', Polymer, 2009, 50, 990–997.
  • M. M. Caruso, S. R. Schelkopf, A. C. Jackson, A. M. Landry, P. V. Braun and J. S. Moore: `Microcapsules containing suspensions of carbon nanotubes', J. Mater. Chem., 2009, 19, 6093–6096.
  • Y. Xin, W. Zhang, S. Zhang and B. S. Xu: ‘Evaluation and analysis for the surface morphology and mechanism properties of the self-repair microcapsule’, Key. Eng. Mater., 2008, 373-374, 714-717.
  • H. P. Wang, Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘Melamine resin-walled microcapsules containing styrene: pre-paration and characterization’, Adv. Mater. Res., 2008, 47-50, 286-289.
  • H. Wang, Y. Yuan, M. Rong and M. Zhang: `Microencapsulation of styrene with melamine-formaldehyde resin', Colloid Polym. ScL, 2009, 287, 1089–1097.
  • Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘Preparation and characterization of microencapsulated polythiol’, Polymer, 2008, 49, 2531-2541.
  • D. A. McIlroy, B. J. Blaiszik, M. M. Caruso, S. R. White, J. S. Moore and N. R. Sottos: `Microencapsulation of a reactive liquid-phase amine for self-healing epoxy composites', Macromolecules, 2010, 43, 1855-1859.
  • J. Yang, M. W. Keller, J. S. Moore, S. R. White and N. R. Sottos: `Microencapsulation of isocyanates for self-healing polymers', Macromolecules, 2008, 41, 9650-9655.
  • J. G. Kirk, S. Naik, J. C. Noosbrugger, D. J. Morrison, D. Volkov and I. Sokolov: ‘Self-healing epoxy composites based on the use of nanoporous silica capsules’, Int. J. Fract., 2009, 159, 101–102.
  • S. J. Pastine, D. Okawa, A. Zettl and J. M. J. Frechet: ‘Chemicals on demand with phototriggerable microcapsules’, J. Am. Chem. Soc., 2009, 131, 13586–13587.
  • M. Zako, N. Takano and H. Fujioka: ‘Intelligent materials system using epoxy particles for self-repair’, Proc. 8th Japan-US Conf. on ‘Composite materials’, Baltimore, MD, USA, September 1998, 841-849.
  • M. Zako and N. Takano: ‘Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP’, J. Intell. Mater. Syst. Struct., 1999, 10, 836–841.
  • S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos and P. V. Braun: `Polydimethylsiloxane-based self-healing materials', Adv. Mater., 2006, 18, 997–1000.
  • S. H. Cho, S. R. White and P. V. Braun: ‘Self-healing polymer coatings’, Adv. Mater., 2009, 21, 645–649.
  • S. Meure, D. Y. Wu and S. Furman: ‘Polyethylene-co-methacrylic acid healing agents for mendable epoxy resins’, Acta Mater., 2009, 57, 4312–4320.
  • S. Meure, D.-Y. Wu and S. Furman: TTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin', Vib. Spectrosc., 2010, 52, 10–15.
  • X. Luo, R. Ou, D. E. Eberly, A. Singhal, W. Viratyaporn and P. T. Mather: ‘A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion’, ACS Appl Mater. Interfaces, 2009, 1, 612–620.
  • C. M. Dry and N. R. Sottos: ‘Passive smart self-repair in polymer matrix composite materials’, Proc. SPIE, 1993, 1916, 438–444.
  • C. M. Dry and W. McMillan, ‘Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers’, Proc. SPIE, 1996, 2718, 448–451
  • C. M. Dry: 'Adhesive liquid core optical fibers for crack detection and repairs in polymer and concrete matrices. Proc. SPIE, 1995, 2444, 410–413.
  • C. Dry: ‘Procedures developed for self-repair of polymer matrix composite materials’, Compos. Struct., 1996, 35, 263–269.
  • M. Motuku, U. K. Vaidya and G. M. Janowski: ‘Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact’, Smart Mater. Struct., 1999, 8, 623–638.
  • C. Dry: ‘Testing of self repairing composite airplanes components by use of CAI and the release of the repair chemicals from carefully inserted small tubes’, Proc. SPIE, 2007, 6527, 65270M-1-65270M-4.
  • C. Dry: ‘Passive self repairing and active self sensing in multifunctional polymer composites’, Proc. SPIE, 2008, 6928, 69281J-1-69281J-9.
  • C. Dry: ‘Self repairing composites for airplane components’, Proc. SPIE, 2008, 6932, 693212-1-693212-13.
  • S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone and P. T. Curtis: ‘A smart repair system for polymer matrix composites’, Composites A, 2001, 32A, 1767–1776.
  • M. Hucker, I. Bond, A. Foreman and J. Hudd: ‘Optimisation of hollow glass fibers and their composites’, Adv. Compos. Lett., 1999, 8, 181–189.
  • J. W. C. Pang and I. P. Bond: ‘A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility’, Compos. Set Technot, 2005, 65, 1791–1799.
  • J. W. C. Pang and I. P. Bond: ‘Bleeding composites’ — damage detection and self-repair using a biomimetic approach', Composites A, 2005, 36A, 183–188.
  • R. S. Trask and I. P. Bond: `Biomimetic self-healing of advanced composite structures using hollow glass fibres', Smart Mater. Struct., 2006, 15, 704–710.
  • R. S. Trask, G. J. Williams and I. P. Bond: Tioinspired self-healing of advanced composite structures using hollow glass fibres', J. R Soc. Interface, 2007, 4, 363–371.
  • G. Williams, R. Trask and I. Bond: ‘A self-healing carbon fibre reinforced polymer for aerospace applications’, Composites A, 2007, 38A, 1525–1532.
  • G. J. Williams, I. P. Bond and R. S. Trask: ‘Compression after impact assessment of self-healing CFRP’, Composites A, 2009, 40A, 1399–1406.
  • H. A. Liu, B. E. Gnade and K. J. Balkus, Jr: ‘A delivery system for self-healing inorganic films’, Adv. Funct. Mater., 2008, 18, 3620–3629.
  • N. Fikru: ‘Self-healing of fiber reinforced polymer composites’, MSc thesis, Louisiana State University, Baton Rouge, LA, USA, 2009.
  • S. Kim, S. Lorente and A. Bejan: Wascularized materials: tree-shaped flow architectures matched canopy to canopy', J. Appl. Phys., 2006, 100, 063525-1-063525-8.
  • A. Bejan, S. Lorente and K.-M. Wang: ‘Networks of channels for self-healing composite materials’, J. Appl. Phys., 2006, 100, 033528-1-033528-6.
  • K.-M. Wang, S. Lorente and A. Bejan: `Vascularized networks with two optimized channel sizes', J. Phys. D, 2006, 39D, 3086–3096.
  • K.-M. Wang, S. Lorente and A. Bejan: Wascularization with grids of channels: multiple scales, loops and body shapes', J. Phys. D, 2007, 40D, 4740–4749.
  • S. Kim, S. Lorente, A. Bejan, W. Miller and J. Morse: ‘The emergence of vascular design in three dimensions’, J. Appl. Phys., 2008, 103, 123511-1-123511-8.
  • K.-M. Wang, S. Lorente and A. Bejan: ‘Vascular materials cooled with grids and radial channels’, Int. J. Heat Mass Transfer, 2009, 52, 1230–1239.
  • H. R. Williams, R. S. Trask, A. C. Knights, E. R. Williams and a I. P. Bond: `Biomimetic reliability strategies for self-healing vascular networks in engineering materials', J. R Soc. Interface, 2008, 5, 735–747.
  • H. R. Williams, R. S. Trask, P. M. Weaver and I. P. Bond: ‘Minimum mass vascular networks in multifunctional materials’, J. R Soc. Interface, 2008, 5, 55–65.
  • D. Therriault, S. R. White and J. A. Lewis: ‘Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly’, Nat. Mater., 2003, 2, 265–271.
  • D. Therriault, R. F. Shepherd, S. R. White and J. A. Lewis: ‘Fugitive inks for direct-write assembly of three-dimensional microvascular networks’, Adv. Mater., 2005, 17, 395–399.
  • J. A. Lewis and G. M. Gratson: ‘Direct writing in three dimensions’, Mater. Today, 2004, 7, 32–39.
  • K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore and S. R. White: ‘Self-healing materials with microvascular networks’, Nat. Mater., 2007, 6, 581–585.
  • K. S. Toohey, N. R. Sottos and S. R. White: ‘Characterization of microvascular-based self-healing coatings’, Exp. Mech., 2009, 49, 707–717.
  • K. S. Toohey, C. J. Hansen, J. A. Lewis, S. R. White and N. R. Sottos: ‘Delivery of two-part self-healing chemistry via micro-vascular networks’, Adv. Funct. Mater., 2009, 19, 1399–1405.
  • C. J. Hansen, W. Wu, K. S. Toohey, N. R. Sottos, S. R. White and J. A. Lewis: ‘Self-healing materials with interpenetrating microvascular networks’, Adv. Mater., 2009, 21, 1–5.
  • H. R. Williams, R. S. Task and I. P. Bond: ‘Self-healing composite sandwich structures’, Smart Mater. Struct., 2007, 16, 1198–1207.
  • H. R. Williams, R. S. Trask and I. P. Bond: ‘Self-healing sandwich panels: restoration of compressive strength after impact’, Compos. ScL TechnoL, 2008, 68, 3171–3177.
  • S. A. Hayes, F. R. Jones, K. Marshiya and W. Zhang: ‘A self-healing thermosetting composite material’, Composites A, 2007, 38A, 1116–1120.
  • S. A. Hayes, W. Zhang, M. Branthwaite and F. R. Jones: ‘Self-healing of damage in fibre-reinforced polymer-matrix composites’, J. R Soc. Interface, 2007, 4, 381–387.
  • M. Yamaguchi, S. Ono and M. Terano: ‘Self-repairing property of polymer network with dangling chains’, Mater. Lett., 2007, 61, 1396–1399.
  • M. Yamaguchi, S. Ono and K. Okamoto: Interdiffusion of dangling chains in weak gel and its application to self-repairing material', Mater. Sci Eng. B, 2009, B162, 189-194.
  • M. A. M. Rahmathullah and G. R. Palmese: ‘Crack-healing behavior of epoxy-amine thermosets’, J. Appl. Polym. ScL, 2009, 113, 2191–2201.
  • M. M. Caruso, D. A. Delafuente, V. Ho, N. R. Sottos, J. S. Moore and S. R. White: ‘Solvent-promoted self-healing epoxy materials’, Macromolecules, 2007, 40, 8830-8832.
  • M. M. Caruso, B. J. Blaiszik, S. R. White, N. R. Sottos and J. S. Moore: ‘Full recovery of fracture toughness using a nontoxic solvent-based self-healing system’, Adv. Funct. Mater., 2008, 18, 1898–1904.
  • S. J. Kalista, Jr, T. C. Ward and Z. Oyetunji: 'Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projec- tile puncture', Mech. Adv. Mater. Struct., 2007, 14, 391–397.
  • S. J. Kalista, Jr and T. C. Ward: ‘Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copo-lymers’, J. R. Soc. Interface, 2007, 4, 405–411.
  • R. J. Varley and S. van der Zwaag: ‘Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions’, Polym. Test., 2008, 27, 11–19.
  • R. J. Varley and S. van der Zwaag: ‘Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration’, Acta Mater., 2008, 56, 5737–5750.
  • J.-M. Lehn: ‘Dynamers: dynamic molecular and supramolecular polymers’, Frog. Polym. Set, 2005, 30, 814–831.
  • L. Bouteiller: ‘Assembly via hydrogen bonds of low molar mass compounds into supramolecular polymers’, Adv. Polym. ScL, 2007, 207, 79–112.
  • S. D. Bergman and F. Wudl: ‘Mendable polymers’, J. Mater. Chem., 2008, 18, 41–62.
  • T. Maeda, H. Otsuka and A. Takahara: ‘Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds’, Frog. Polym. Set, 2009, 34, 581–604.
  • M. W. Urban: ‘Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks’, Frog. Polym. Set, 2009, 34, 679–687.
  • J. S. Park, K. Takahashi, Z. Guo, Y. Wang, E. Bolanos, C. Hamann-Schaffner, E. Murphy, F. Wudl and H. T. Hahn: ‘Towards development of a self-healing composite using a mendable polymer and resistive heating’, J. Compos. Mater., 2008, 42, 2869–2881.
  • J. S. Park, H. S. Kim and H. T. Hahn: ‘Healing behavior of a matrix crack on a carbon fiber/mendomer composite’, Compos. Set Technot, 2009, 69, 1082–1087.
  • X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran and F. Wudl: ‘A thermally re-mendable cross-linked polymeric material’, Science, 2002, 295, 1698-1702.
  • X. Chen, F. Wudl, A. K. Mal, H. Shen and S. R. Nutt: ‘New thermally remendable highly cross-linked polymeric materials’, Macromolecules, 2003, 36, 1802-1807.
  • T. A. Plaisted and S. Nemat-Nasser: ‘Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer’, Acta Mater., 2007, 55, 5684–5696.
  • Y.-L. Liu and C.-Y. Hsieh: ‘Crosslinked epoxy materials exhibiting thermal remendability and removability from multi-functional maleimide and furan compounds’, J. Polym. Set A, 2006, 44A, 905–913.
  • B. Gotsmann, U. Duerig, J. Frommer and C. J. Hawker: ‘Exploiting chemical switching in a Diels-Alder polymer for nanoscale probe lithography and data storage’, Adv. Funct. Mater., 2006, 16, 1499–1505.
  • B. J. Adzima, H. A. Aguirre, C. J. Kloxin, T. F. Scott and C. N. Bowman: `Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels—Alder polymer network', Macromolecules, 2008, 41, 9112-9117.
  • E. B. Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S. R. Nutt and M. L. Auad: ‘Synthesis and characterization of a single-component thermally remendable polymer network: Staudinger and Stille revisited’, Macromolecules, 2008, 41, 5203-5209.
  • Y.-L. Liu and Y.-W. Chen: ‘Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides’, MacromoL Chem. Phys., 2007, 208, 224–232.
  • Y. Zhang, A. A. Broekhuis and F. Picchioni: ‘Thermally self-healing polymeric materials: the next step to recycling thermoset polymers?’, Macromolecules, 2009, 42, 1906-1912.
  • A. A. Kavitha and N. K. Singha: ‘Atom-transfer radical copolymerization of furfuryl methacrylate (FMA) and methyl methacrylate (MMA): a thermally-amendable copolymer’, MacromoL Chem. Phys., 2007, 208, 2569–2577.
  • A. A. Kavitha and N. K. Singha: ‘A tailor-made polymethacrylate bearing a reactive diene in verevsible Diels—Alder reaction’, J. Polym. Sci. A, 2007, 45A, 4441–4449.
  • A. A. Kavitha and N. K. Singha: ‘Click chemistry’ in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material', ACS Appl. Mater. Interfaces, 2009, 1, 1427–1436.
  • M. Wouters, E. Craenmehr, K. Tempelaars, H. Fischer, N. Stroeks and J. van Zanten: ‘Preparation and properties of a novel remendable coating concept’, Frog. Org. Coat., 2009, 64, 156–162.
  • M. Watanabe and N. Yoshie: ‘Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers’, Polymer, 2006, 47, 4946-4952.
  • K. Ishida and N. Yoshie: ‘Synthesis of readily recyclable biobased plastics by Diels—Alder reaction’, MacromoL Biosci, 2008,8, 916–922.
  • Q. Tian, Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘A thermally remendable epoxy resin’, J. Mater. Chem., 2009, 19, 1289–1296.
  • G. R. Palmese, A. M. Peterson and R. E. Jensen: ‘Remendable polymeric materials using reversible covalent bonds’, Proc. 26th Army Science Conf., Orlando, FL, USA, December 2008, Office of the Assistant Secretary of the Army, Paper no. GP-08.
  • A. M. Peterson, R. E. Jensen and G. R. Palmese: ‘Reversibly cross-linked polymer gels as healing agents for epoxy-amine thermosets’, ACS Appl. Mater. Interfaces, 2009, 1, 992–995.
  • S.-Y. Cho, J.-G. Kim and C.-M. Chung: ‘A fluorescent crack sensor based on cyclobuane-containing crosslinked polymers of tricinnamates’, Sens. Actuators B, 2008, 134B, 822–825.
  • C.-M. Chung, Y.-S. Roh, S.-Y. Cho and J.-G. Kim: ‘Crack healing in polymeric materials via photochemical [2 + 2] cycload-dition’, Chem. Mater., 2004, 16, 3982–3984.
  • B. Ghosh and M. W. Urban: ‘Self-repairing oxetane-substituted chitosan polyurethane networks’, Science, 2009, 323, 1458-1460.
  • F. R. Kersey, W. C. Yount and S. L. Craig: ‘Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions’, J. Am. Chem. Soc., 2006, 128, 3886–3887.
  • S. Karthikeyan, S. L. Potisek, A. Piermattei and R. P. Sijbesma: ‘Highly efficient mechanochemical scission of silver—carbene coordination polymers’, J. Am. Chem. Soc., 2008, 130, 14968–14969.
  • A. Piermatteir, S. Karthikeyan and R. P. Sijbesma: ‘Activating catalysts with mechanical force’, Nat. Chem., 2009, 1, 133–137.
  • L. Jafarpour and S. P. Nolan: ‘Transition-metal systems bearing a nucleophilic carbene ancillary ligand: from thermochemistry to catalysis’, Adv. Organomet. Chem., 2001, 46, 181.
  • W. A. Herrmann, T. Weskamp and V. P. W. Bohm: ‘Metal complexes of stable carbenes’, Adv. Organomet. Chem., 2001, 48, 1.
  • W. A. Herrmann: ‘N-heterocyclic carbenes: a new concept in organometallic catlaysis’, Angew. Chem. Int. Ed, 2002, 41, 1290.
  • J. M. J. Paulusse and R. P. Sijbesma: ‘Reversible mechanochem-istry of a Pc111 coordination polymer’, Angew. Chem. Int. Ed, 2004, 43, 4460–4462.
  • J. M. J. Paulusse, J. P. J. Huijbers and R. P. Sijbesma: ‘Quantification of ultrasound-induced chain scission in PP—phosphine coordination polymers’, Chem. Eur. 1, 2006, 12, 4928-4934.
  • J. M. J. Paulusse and R. P. Sijbesma: 'Selectivity of mechan-ochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers', Chem. Commun., 2008, 37, 44164418.
  • F. R. Kersey, D. M. Loveless and S. L. Craig: ‘A hybrid polymer gel with controlled rates of cross-link rupture and self-repair’, J. R Soc. Interface, 2007, 4, 373–380.
  • S. Varghese, A. Lele and R. Mashelkar: ‘Metal-ion-mediated healing of gels’, J. Polym. ScL A, 2006, 44A, 666–670.
  • J. W. Kamplain and C. W. Bielawski: ‘Dynamic covalent polymers based on carbene dimerization’, Chem. Commun., 2006, 16, 1727–1729.
  • K. A. Williams, A. J. Boydston and C. W. Bielawski: ‘Towards electrically conductive, self-healing materials’, J. R Soc. Interface, 2007, 4, 359–362.
  • D. Montarnal, P. Cordier, C. Soulie-Ziakovic, F. Tournilhac and L. Leibler: ‘Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, urea’, J. Polym. Sci A, 2008, 46A, 7925–7936.
  • D. Montarnal, F. Tournilhac, M. Hidalgo, J.-L. Couturier and L. Leibler: ‘Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers’, J. Am. Chem. Soc., 2009, 131, 7966–7967.
  • P. Cordier, F. Tournilhac, C. Soulie-Ziakovic and L. Leibler: ‘Self-healing and thermoreversible rubber from supramolecular assembly’, Nature, 2008, 451, 977–980.
  • S. K. Kundu, T. Matsunaga, M. Yoshida and M. Shibayama: Aheological study on rapid recovery of hydrogel based on oligomeric electrolyte', J. Phys. Chem. B, 2008, 112B, 11537–11541.
  • B. W. Greenland, S. Burattini, W. Hayes and H. M. Colquhoun: ‘Design, synthesis and computational modeling of aromatic tweezer-molecules as models for chain-folding polymer blends’, Tetrahedron, 2008, 64, 8346–8354.
  • S. Burattini, H. M. Colquhoun, B. W. Greenland and W. Hayes: ‘A novel self-healing supramolecular polymer system’, Faraday Discuss., 2009, 143, 251–264.
  • S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay and S. J. Rowan: ‘A self-repairing, supramolecular polymer system: heal-ability as a consequence of donor-acceptor 7C-7C stacking interac-tions’, Chem. Commun., 2009, 44, 6717–6719.
  • M. K. Beyer and H. Clausen-Schaumann: `Mechanochemistry: the mechanical activation of covalent bonds', Chem. Rev., 2005, 105, 2921-2948.
  • M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White and J. S. Moore: ‘Mechanically-induced chemical changes in polymeric materials’, Chem. Rev., 2009, 109, 5755–5798.
  • J. Liang and J. M. Fernandez: `Mechanochemistry: one bond at a time', ACS Nano, 2009, 3, 1628–1645.
  • J. D. Rule, S. R. Wilson and J. S. Moore: ‘Radical polymerization initiated by the Bergman Cyclization’, J. Am. Chem. Soc., 2003, 125, 12992–12993.
  • J. D. Rule and J. S. Moore: ‘Polymerizations initiated by diradicals from cycloaromatization reactions’, Macromolecules, 2005, 38, 7266-7273.
  • C. R. Hickenboth, J. D. Rule and J. S. Moore: ‘Preparation of enediyne-crosslinked networks and their reactivity under thermal and mechanical conditions’, Tetrahedron, 2008, 64, 8435-8448.
  • K. L. Berkowski, S. L. Potisek, C. R. HIckenboth and J. S. Moore: ‘Ultrasound-induced site-specific cleavage of azo-functio-nalized poly(ethylene glycol)’, Macromolecules, 2005, 38, 8975-8978.
  • S. L. Potisek, D. A. Davis, N. R. Sottos, S. R. White and J. S. Moore: `Mechanophore-linked addition polymers', J. Am. Chem. Soc., 2007, 129, 13808–13809.
  • D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martinez, S. R. White, J. S. Moore and N. R. Sottos: ‘Force-induced activation of covalent bonds in mechanoresponsive polymeric materials’, Nature, 2009, 459, 68–72.
  • A. M. Basedow and K. H. Ebert: ‘Ultrasonic degradation of polymers in solution’, Adv. Polym. Set, 1977, 22, 83–148.
  • K. S. Suslick and G. J. Price: ‘Applications of ultrasound to materials chemistry’, Annu. Rev. Mater. Sci, 1999, 29, 295–326.
  • J. M. Lenhardt, A. L. Black and S. L. Craig: `gem-dichlorocy-clopropanes as abundant and efficient mechanophores in poly-butadiene copolymers under mechanical stress', J. Am. Chem. Soc., 2009, 131, 10818–10819.
  • E. N. Brown, S. R. White and N. R. Sottos: `Microcapsule induced toughening in a self-healing polymer composite', J. Mater. Set, 2004, 39, 1703–1710.
  • E. J. Barbero and K. J. Ford: ‘Characterization of self-healing fiber-reinforced polymer-matrix composite with distributed damage’, J. Adv. Mater., 2007, 39, 20–27.
  • A. R. Hamilton, N. R. Sottos and S. R. White: ‘Local strain concentrations in a microvascular network’, Exp. Mech., 2010, 50, 255–263.
  • R. P. Wool: ‘Self-healing materials: a review’, Soft Matter, 2008, 4, 400–418.
  • E. J. Barbero, F. Greco and P. Lonetti: ‘Continuum damage-healing mechanics with application to self-healing composites’, Int. J. Damage Mech., 2005, 14, 51–81.
  • E. J. Barbero and P. Lonetti: ‘Application of continuum damage healing mechanics to self-healing composites’, Am. Soc. Mech. Eng., Aerosp. Div. (Publ.) AD, 2003, 68, 515–519.
  • I. P. Bond, R. S. Trask and H. R. Williams: ‘Self-healing fiber-reinforced polymer composites’, MRS Bull, 2008, 33, 770–774.
  • M. R. Kessler and S. R. White: ‘Self-activated healing of delamination damage in woven composites’, Composites A, 2001, 32A, 683–699.
  • M. R. Kessler, N. R. Sottos and S. R. White: ‘Self-healing structural composite materials’, Composites A, 2003, 34A, 743–753.
  • L. T. Drzal and M. Madhukar: ‘Fiber—matrix adhesion and its relationship to composite mechanical properties’, J. Mater. Set, 1993, 28, 569–610.
  • K. Sanada, I. Yasuda and Y. Shindo: ‘Transverse tensile strength of unidirectional dibre-reinforced polymers and self-healing of interfacial debonding’, Plast. Rubber Compos., 2005, 35, 67–72.
  • K. Sanada, N. Itaya and Y. Shindo: ‘Effect of microstructure on the performance of unidirectional fiber composites encompassing self-healing of interfacial debonding’, in ‘Advances in hetero-geneous material mechanics 2008’, 736-739; 2008, Lancaster, PA, Destech Publications Inc.
  • J. L. Moll, S. R. White and N. R. Sottos: ‘A self-sealing fiber-reinforced composite’, J. Compos. Mater., 2010, in press, DOT: 10.1177/0021998309356605.
  • A. J. Patel, N. R. Sottos, E. D. Wetzel and S. R. White: ‘Autonomic healing of low-velocity impact damage in fiber-reinforced composites’, Composites A, 2010, 41A, 360–368.
  • J. A. Carlson, J. M. English and D. J. Coe: ‘A flexible, self-healing sensor skin’, Smart Mater. Struct., 2006, 15, N129—N135.
  • C. Suryanarayana, K. Chowdoji Rao and D. Kumar: ‘Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings’, Frog. Org. Coat., 2008, 63, 72–78.
  • C. Andersson, L. Jarnstrom, A. Fogden, I. Mira, W. Voit, S. Zywicki and A. Bartkowiak: ‘Preparation and incorporation of microcapsules in functional coatings for self-healing packaging board’, Packag. Technot Sci, 2009, 22, 275–291.
  • J.-H. Park and P. V. Braun: ‘Coaxial electrospinning of self-healing coatings’, Adv. Mater., 2009, 21, 1–4.
  • C. C. Corten and M. W. Urban: ‘Repairing polymers using an oscillating magnetic field’, Adv. Mater., 2009, 21, 5011–5015.
  • A. S. Iyer and L. A. Lyon: ‘Self-healing colloidal crystals’, Angew. Chem. Int. Ed, 2009, 48, 4562–4566.
  • A. B. South and L. A. Lyon: ‘Autonomic self-healing of hydrogel thin films’, Angew. Chem. Int. Ed, 2010, 49, 767–771.
  • G. Deng, C. Tang, F. Li, H. Jiang and Y. Chen: ‘Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties’, Macromolecules, 2010, 43, 1191-1194.
  • H. P. Wang, Y. C. Yuan, M. Z. Rong and M. Q. Zhang: ‘Self-healing of thermoplastics via living polymerization’, Macromolecules, 2010, 43, 595–598.
  • A. C. Balazs: ‘Modeling self-healing materials’, Mater. Today, 2007, 10, 18–23.
  • S. Maiti, C. Shankar, P. H. Geubelle and J. Kieffer: ‘Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers’, J. Eng. Mater. Technot, 2006, 128, 595–602.
  • S. Maiti and P. H. Geubelle: ‘Cohesive modeling of fatigue crack retardation in polymers: crack closure effect’, Eng. Fract. Mech., 2006, 73, 22–41.
  • J. Y. Lee, G. A. Buxton and A. C. Balazs: ‘Using nanoparticles to create self-healing composites’, J. Chem. Phys., 2004, 121, 5531–5540.
  • S. Tyagi, J. Y. Lee, G. A. Buxton and A. C. Balazs: ‘Using nanocomposite coatings to heal surface defects’, Macromolecules, 2004, 37, 9160-9168.
  • K. A. Smith, S. Tyagi and A. C. Balazs: ‘Healing surface defects with nanoparticle-filled polymer coatings: effect of particle geometry’, 2005, 38, 10138-10147.
  • S. Gupta, Q. Zhang, T. Emrick, A. C. Balazs and T. P. Russell: ‘Entropy-driven segregation of nanoparticles to cracks in multi-layered composite polymer structures’, Nat. Mater., 2006, 5, 229–233.
  • R. Verberg, A. T. Dale, P. Kumar, A. Alexeev and A. C. Balazs: 'Healing substrates with mobile, particle-filled microcapsules: designing a ‘repair and go’ system', J. R. Soc. Interface, 2007, 4, 349–357.
  • G. V. Kolmakov, K. Matyjeszewski and A. C. Balazs: ‘Harnessing labile bonds between nanogel particles to create self-healing materials’, ACS Nano, 2009, 3, 885–892.
  • G. V. Kolmakov, R. Revanur, R. Tangirala, T. Emrick, T. P. Russell, A. J. Crosby and A. C. Balazs: ‘Using nanoparticle-filled microcapsules for site-specific healing of damaged substrates: creating a 'repair-and-go’ system', ACS Nano, 2010,4, 1115–1123.
  • G. Lanzara, Y. Yoon, H. Liu, S. Peng and W.-I. Lee: ‘Carbon nanotube reservoirs for self-healing materials’, Nanotechnology, 2009, 20, 335704.
  • O. Herbst and S. Luding: ‘Modeling particulate self-healing materials and application to uni-axial compression’, Int. J. Fract., 2008, 154, 87–103.
  • A. Ural, V. R. Krishnan and K. D. Papoulia: ‘A cohesive zone model for fatigue crack growth allowing for crack retardation’, Int. J. Solids Struct., 2009, 46, 2453–2462.
  • A. Dementsov and V. Privman: ‘Percolation modeling of conductance of self-healing composites’, Physica A, 2007, 385A, 543–550.
  • V. Privman, A. Dementsov and I. Sokolov: ‘Modeling of self-healing polymer composites reinforced with nanoporous glass fibers’, J. Comput. Theor. Nanosci., 2007, 4, 190–193.
  • A. Dementsov and V. Privman: ‘Three-dimensional percolation modeling of self-healing composites’, Phys. Rev. E, 2008, 78E, 021104.
  • J. M. Lucci, R. S. Amano and P. Rohatgi: ‘Computational analysis of self-healing in a polymer matrix with microvascular networks’, Proc. ASME 2008 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf. (IDETC/CIE 2008), Brooklyn, NY, USA, August 2008, ASME. Paper no. DETC2008-50148 pp. 409-417, DOT: 10.1115/DETC 2008-50148.
  • S. Luding and A. S. J. Suiker: ‘Self-healing of damaged particulate materials through sintering’, Philos. Mag., 2008, 88, 3445–3457.
  • S. D. Mookhoek, H. R. Fischer and S. van der Zwaag: ‘A numerical study into the effects of elongated capsules on the healing efficiency of liquid-based systems’, Comput. Mater. Sci, 2009, 47, 506–511.
  • Available at: http://www.autonomicmaterials.com
  • Available at: http://www.arkema-inc.com