743
Views
38
CrossRef citations to date
0
Altmetric
Review

High temperature fatigue: behaviour of three typical classes of structural materials

&
Pages 298-317 | Received 19 Apr 2014, Accepted 14 Sep 2014, Published online: 19 Jan 2015

References

  • Fournier B: ‘Fatigue – fluage des aciers martensitiques à 9–12% Cr. Comportement et endommagement’, PhD thesis, Ecole des Mines de Paris, Paris, France, 2007.
  • Kitahara H, Rintaro U, Tsuji N and Ninamino Y: ‘Crystallographic features of lath martensite in low carbon steel’, Acta Mater., 2006, 54, 1279–1288.
  • Fournier B, Sauzay M, Caës C, Noblecourt M and Mottot M: ‘Analysis of the hysteresis loops of a martensitic steel. Part I: Study of the influence of strain amplitude and temperature under pure fatigue loadings using an enhanced stress partitioning method’, Mater. Sci. Eng. A, 2006, A437, 183–196.
  • Fournier B, Sauzay M, Caës C, Mottot M, Noblecourt M and Pineau A: ‘Analysis of the hysteresis loops of a martensitic steel. Part II: Study of the influence of creep and stress relaxation holding times on cyclic behaviour’, Mater. Sci. Eng. A, 2006, A437, 197–211.
  • Fournier B, Sauzay M, Caës C, Noblecourt M, Mottot M, Bougault A, Rabeau V and Pineau A: ‘Creep–fatigue–oxidation interactions in a 9Cr–1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue lifetime’, Int. J. Fatigue, 2008, 30, 649–662.
  • Fournier B, Sauzay M, Caës C, Noblecourt M, Mottot M, Bougault A, Rabeau V and Pineau A: ‘Creep–fatigue–oxidation interactions in a 9Cr–1Mo martensitic steel. Part II: Effect of compressive holding period on fatigue lifetime’, Int. J. Fatigue, 2008, 30, 663–676.
  • Fournier B, Sauzay M, Caës C, Noblecourt M, Mottot M, Bougault A, Rabeau V, Man J, Gillia O, Lemoine P and Pineau A: ‘Creep–fatigue–oxidation interactions in a 9Cr–1Mo martensitic steel. Part II: Lifetime prediction’, Int. J. Fatigue, 2008, 30, 1797–1812.
  • Fournier B, Sauzay M, Caës C, Noblecourt M, Mottot M, Allais L, Tournie I and Pineau A: ‘Creep–fatigue interactions in a 9%Cr–1Mo martensitic steel. Part I: Mechanical test results’, Metall. Mater. Trans. A, 2009, 40A, 321–329.
  • Fournier B, Sauzay M, Borcelo F, Rauch E, Renault A, Cozzika T, Dupuy L and Pineau A: ‘Creep–fatigue interactions in a 9%Cr–1Mo martensitic steel. Part II: Microstructural observations’, Metall. Mater. Trans. A, 2009, 40A, 330–341.
  • Levaillant C: ‘Approche métallographique de l’endommagement d’aciers inoxydables austénitiques sollicités en fatigue plastique ou en fluage: description et interprétation physique des interactions fatigue–fluage–oxydation’, PhD thesis, Université de Technologie de Compiègne, Compiègne, France, 1984.
  • Weiss J: ‘Endommagement en viscoplasticité cyclique sous chargement multiaxial à haute température d’un acier inoxydable austénitique’, PhD thesis, Ecole des Mines de Paris, Paris, France, 1992.
  • Argence D: ‘Endommagements de fatigue et de fluage sous chargement multiaxial appliqué à un acier inoxydable austénitique’, PhD thesis, Ecole des Mines de Paris, Paris, France, 1996.
  • Eggeler C: ‘The effect of long-term creep on particle coarsening in tempered martensite ferritic steels’, Acta Metall., 1989, 37, 3225–3234.
  • Gaffard V: ‘Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr–1Mo–NbV steels and weldments’, PhD thesis, Ecole des Mines de Paris, Paris, France, 2005.
  • Brachet JC: ‘Alliages martensitiques: effets de l’addition de l’azote, du niobium et du vanadium sur la microstructure, les transformations de phase et les propriétés mécaniques’, PhD thesis, Université de Paris-Sud, Orsay, Paris, France, 1991.
  • de Castro V, Marquis EA, Lozano-Perez S, Pareja R and Jenkins ML: ‘Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe–12Cr alloy’, Acta Mater., 2011, 59, 3927–3936.
  • Ukai S and Ohtsuka A: ‘Low cycle fatigue properties of ODS ferritic–martensitic steels at high temperature’, J. Nucl. Mater., 2007, 367–370, 234–238.
  • Fournier B, Salvi M, Caës C, Malaplate J, Dalle F, Sauzay M, de Carlan Y and Pineau A: ‘High temperature mechanical strength and microstructural stability of advanced 9–12% Cr steels and ODS steels’, Proc. Conf. ICF 12, Ottawa, Ontario, Canada, July 2009, NRC. 3234–3244.
  • Rouffié AL, Crépin J, Sennour M, Tanguy B, Pineau A, Hamon D, Wident P, Vincent S, Garat V and Fournier B: ‘Effect of the thermal ageing on the tensile and impact properties of a 18% Cr ODS ferritic steel’, J. Nucl. Mater., 2014, 445, 37–42.
  • Armas A, Petersen C, Schmitt R, Avalos M and Alvarez I: ‘Cyclic instability of martensitic laths in reduced activation ferritic/martensitic steels’, J. Nucl. Mater., 2004, 329–333, 252–256.
  • Kim S and Weertman JR: ‘Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue’, Metall. Trans. A, 1988, 19A, 999–1007.
  • Challenger KD, Miller AK and Brinkman CR: ‘An explanation for the effects of hold periods on the elevated temperature fatigue behaviour of 2¼Cr–1Mo steel’, J. Eng. Mater. Technol., 1981, 103, 7–14.
  • Mura T: ‘A theory of fatigue crack initiation’, Mater. Sci. Eng. A, 1994, A176, 61–70.
  • Tanaka K and Mura T: ‘A dislocation model for fatigue crack initiation’, J. Appl. Mech., 1981, 48, 97–103.
  • Brückner-Foit A and Huang S: ‘Numerical simulation of micro-crack initiation of martensitic steel under fatigue loading’, Int. J. Fatigue, 2006, 28, 963–971.
  • Alexandre F: ‘Aspects probabilistes et microstructuraux de l’amorçage des fissures de fatigue dans l’alliage In 718’, PhD thesis, Ecole des Mines de Paris, Paris, France, 2004.
  • Alexandre F, Deyber S and Pineau A: ‘Modelling of the optimum grain size on the low cycle fatigue life of a Ni-based superalloy in the presence of two possible crack initiation sites’, Scr. Mater., 2004, 50, 25–30.
  • Tomkins B: ‘Fatigue crack propagation – an analysis’. Philos. Mag., 1968, 18, 1041–1066.
  • Rezgui B: ‘Interaction fatigue–fluage. Effet d’un temps de maintien de traction sur la résistance à la fatigue oligocyclique à 600°C d’un acier Z2CND17-13 (AISI 316L)’, PhD thesis, Université Paris XI, Paris, France, 1982.
  • Chen B, Flewitt PEJ and Smith DJ: ‘Microstructural sensitivity of 316H austenitic stainless steel: Residual stress relaxation and grain boundary facture’, Mater. Sci. Eng. A, 2010, A527, 7387–7399.
  • Yamaguchi K and Kanazawa K: ‘Influence of grain size on the low-cycle fatigue lives of austenitic stainless steels at high temperatures’, Metall. Trans. A, 1980, 11A, 1692–1699.
  • Argence D and Pineau A: ‘Predictive metallurgy applied to creep–fatigue damage of austenitic stainless steels’, in ‘Structural materials: engineering application through scientific insight of materials’, (ed. E. H. Hondros and M. McLean), 229–257; 1996, Cambridge, The University Press.
  • Jacquelin B: ‘Amorçage des fissures en fatigue oligocyclique sous chargement multiaxial’, PhD thesis, Ecole des Mines de Paris, Paris, France, 1983.
  • Hales R and Ainsworth RA: ‘Multiaxial creep–fatigue rules’, Proc. 11th Int. Conf. on ‘Structural mechanics in reactor technology’, Post Seminar 5, 8th Int. Sem. on ‘Inelastic analysis, fracture and prediction’, Tokyo, Japan, August 1991, Nippon MARC Co., Ltd, 125–138.
  • Weiss J and Pineau A: ‘Fatigue and creep fatigue damage of austenitic stainless steels under multiaxial loading’, Metall. Trans. A, 1993, 24A, 2247–2261.
  • Wareing J: ‘Creep–fatigue behaviour of four casts of type 316 stainless steel’, Fatigue Eng. Mater. Struct., 1981, 4, 131–145.
  • Levaillant C, Grattier J, Mottot M and Pineau A: ‘Creep and creep–fatigue intergranular damage in austenitic stainless steels: discussion of the creep-dominated regime’, in ‘Low-cycle fatigue’, (ed. H. D. Solomon et al.), ASTM STP 942, 414–437; 1988, Philadelphia, PA, ASTM.
  • Hales R: ‘A quantitative metallographical assessment of structural degradation of type 316 stainless steel during creep–fatigue’. Fatigue Eng. Mater. Struct., 1980, 3, 339–356.
  • Skelton RP: ‘Damage factors during high temperature fatigue crack growth’, in ‘Behavior of defects at high temperatures’, (ed. R. A. Ainsworth and R. P. Skelton), 191–218; 1993, London, Mechanical Eng. Publications.
  • Yoshida M, Levaillant C and Pineau A: ‘Metallographic measurement of creep intergranular damage and creep strain, Influence of stress state on critical damage at failure in an austenitic stainless steel’, Proc. Int. Conf. on Creep, Tokyo, Japan, April 1986, SME, 327–332.
  • Yoshida M, Levaillant C, Piques R and Pineau A: ‘Quantitative study of intergranular damage in an austenitic stainless steel on smooth and notched bars’, in ‘High temperature fracture mechanics and mechanics’, (ed. P. Bensussan), 3–21; 1990, London, Mech. Eng. Publications.
  • Spindler MW: ‘The multiaxial creep ductility of austenitic stainless steels’, Fatigue Fract. Eng. Mater. Struct., 2004, 27, 273–281.
  • Spindler MW: ‘The multiaxial and uniaxial creep ductility of Type 304 steel as a function of stress and strain rate’, Mater. High Temp., 2004, 21, 47–52.
  • Auzoux Q, Allais L, Caës C, Girard B, Tournié B, Gourgues A.-F and Pineau A: ‘Intergranular damage in AISI 316L(N) austenitic stainless steel at 600°C’. Nucl. Eng. Des., 2005, 235, 2227–2245.
  • Weiss B and Stickler R: ‘Phase instabilities during high temperature exposure of 316 austenitic stainless steel’, Metall. Trans., 3, 851–866.
  • Pineau A and Antolovich S: ‘High temperature fatigue’, in ‘Fatigue of materials and structures’, (ed. C. Bathias and A. Pineau), 1–130; 2011, London, ISTE/John Wiley.
  • Pineau A and Antolovich S: ‘High temperature fatigue of nickel-base superalloys – a review with special emphasis on deformation modes and oxidation’, Eng. Fail. Anal., 2006, 16, 2668–2697.
  • Rosenker MV: ‘Safety recommendation’, NTSB report on Los Angeles engine failure, safety recommendation, NTSB, Washington, DC, USA, 2006, 60-06, 60–64.
  • McClintock FA: ‘Fatigue crack propagation’, ASTM STP 415, 483–484; 1967, Philadelphia, PA, American Society for Testing and Materials.
  • McClintock FA: ‘On the plasticity of the growth of fatigue cracks’, in ‘Fracture of solids’, (ed. D. C. Drucker and J. J. Gilman), 65; 1963, New York, Interscience Publishers.
  • Clavel M and Pineau A: ‘Fatigue behaviour of two nickel base alloys. Part I: experimental results on low cycle fatigue, fatigue crack propagation and substructures’, Mater. Sci. Eng., 1982, 55, 157–171.
  • Clavel M and Pineau A: ‘Fatigue behaviour of two nickel base alloys. Part II: physical modelling of the fatigue crack propagation process’, Mater. Sci. Eng., 1982, 55, 173–180.
  • Antolovich SD, Saxena A and. Chanani GR: ‘A model for fatigue crack propagation’, Eng. Fract. Mech., 1975, 7, 649–652.
  • Saxena A and Antolovich SD: ‘Low cycle fatigue, fatigue crack propagation and substructures in a series of polycrystalline Cu–Al alloys’, Metall. Trans. A, 1976, 6A, 1809–1828.
  • Baïlon JP and Antolovich SD: ‘The effect of microstructure on fatigue crack propagation: a review of existing models and suggestions for further research’, in ‘Fatigue mechanisms: advances in quantitative measurement of physical damage’, (ed. J. Lankford et al.), ASTM STP 811, 313–349; 1983, Philadelphia, PA, American Society of Testing Materials.
  • Bowman RR: ‘Effect of melt spinning on the microstructure and mechanical properties of three nickel base superalloys’, MSc thesis, Georgia Tech, Atlanta, GA, USA, 1985.
  • Bowman RR: ‘The effect of microstructure on the fatigue crack growth resistance of nickel base superalloys’, PhD thesis, Georgia Tech, Atlanta, GA, USA, 1988.
  • Bowman RR and Antolovich SD: ‘The effect of microstructure on the fatigue crack growth resistance of nickel base superalloys’, in ‘Superalloys 1988’, (ed. D. N. Duhl et al.), 565–574; 1988, Warrendale, PA, AIME.
  • Ghonem H and Zheng D: ‘Depth of intergranular oxygen diffusion during environment-dependent fatigue crack growth in alloy 718’, Mater. Sci. Eng., 1992, 150, 151–160.
  • Viskari L, Hörnqvist M, Moore KL, Cao Y and Stiller K: ‘Intergranular crack tip oxidation in a Ni-base superalloy’, Acta Mater., 2013, 61, 3630–3639.
  • Molins R, Hochstetter G, Chassaigne JC and Andrieu E: ‘Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature’, Acta Mater., 1997, 45, 663–674.
  • Chassaigne JC: ‘High temperature crack propagation in Ni-base superalloy N18 fabricated by p.m. study of the coupling of mechanical and environmental effects at the head of a crack’, PhD thesis, Ecole des Mines de Paris, Paris, France, 1997.
  • Ponnelle S: ‘Propagation des fissures par fatigue à haute temperature dans l’ Inconel 718: effets de microstructure et de chargements complexes’, PhD thesis, Ecole des Mines de Paris, Paris, France, 2001.
  • Kruch S, Prigent P and Chaboche JL: ‘A fracture mechanics based fatigue–creep–environment crack growth model for high temperature’, Int. J. Press. Ves. Pip., 1994, 59, 141–148.
  • Ponnelle S, Brethes B and Pineau A: ‘Orientational effects and influence of delta phase on fatigue crack growth rates in a forged disc of Inconel 718 superalloy’, Proc. 5th Int. Special Emphasis Symp. on ‘Superalloys 718, 625, 706 and derivatives’, Pittsburgh, PA, USA, June 2001, TMS. 501–510.
  • S. Ponnelle, B. Brethes and A. Pineau: ‘High temperature fatigue crack growth rate in Inconel 718: dwell effect annihilations’, in ‘Temperature-fatigue interaction’, (eds. L. Rémy and J. Petit) 257–266, 2002, Elsevier Science Ltd, London UK.
  • Xiao L, Chen DL and Chaturvedi MC: ‘Effect of boron on fatigue crack growth behaviour in superalloy In 718 at RT and 650°C’, Mater. Sci. Eng. A, 2006, A428, 1–11.
  • Sun WR, Gao SR, Lee JH, Park NK, Choe YS and Hu ZQ: ‘Effects of phosphorus on the δ-Ni3Nb phase precipitates and the stress rupture properties in alloy 718’, Mat. Sci. Eng. A, 1998, A247, 173–179.
  • Xie XS, Dong JX and Zhang MC: ‘Research and development of Inconel 718 type superalloy’, Mater. Sci. Forum, 2007, 539–543, 262–269.
  • Neu RW and Sehitoglu H: ‘Thermomechanical fatigue, oxidation, and creep. Part II. Life prediction’, Metall. Trans. A, 1989, 20A, 1769–1783.
  • Amaro RL: ‘Thermomechanical fatigue crack formation in a single crystal Ni-base superalloy’, PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2010.
  • Staroselsky A and Cassenti BN: ‘On creep, plasticity, and fatigue of single crystal superalloy’, Int. J. of Solids Struct., 2011, 48, 2060–2075.
  • Antolovich SD, Liu S and Baur R: ‘Low cycle fatigue behavior of René 80 at elevated temperatures’, Metall. Trans. A, 1981, 12A, 473–481.
  • Antolovich SD and Jayaraman N: ‘The effect of microstructure on fatigue behavior of nickel base alloys’, in ‘Fatigue: environment and temperature effects’, (ed. J. J. Burke and V. Weiss), 119–144; 1983, New York, Plenum Press.
  • Antolovich SD, Rosa E and Pineau A: ‘Low cycle fatigue of René 77 at elevated temperatures’, Mater. Sci. Eng., 1981, 47, 47–57.
  • Lerch BA, Antolovich SD and Jayaraman N: ‘A study of fatigue damage mechanisms in Waspaloy from 25°C–800°C’, Mater. Sci. Eng., 1984, 66, 151–166.
  • Antolovich SD and Armstrong RW: ‘Plastic strain localization in metals: origins and consequences’, Prog. Mater. Sci., 2013, 59, 1–160.
  • Amaro RL, Antolovich SD and Neu RW: ‘Mechanism-based life model for out-of-phase thermomechanical fatigue in single crystal Ni-base superalloys’, Fatigue Fract. Eng. Mater. Struct., 2012, 35, 658–671.
  • Amaro RL, Antolovich SD, Neu RW, Adair BS, Hirsch MR, Fernandez-Zelaia P, O’Rourke M and Staroselsky A: ‘Towards the development of a physics-based thermo-mechanical fatigue life prediction model for a single crystalline Ni-base superalloy’, Mater. Perform. Charact., 2014, 3, 1–15.
  • Shenoy MM, Gordon AP, McDowell DL and Neu RW: ‘Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy’, J. Eng. Mater. Technol., 2005, 127, 325–336
  • Fernandez-Zelaia P: ‘The effect of stress elevators in thermomechanical fatigue crack formation in nickel-base superalloys’, MSc thesis, Georgia Institute of Technology, , Atlanta, GA, USA, 2012.
  • Fernandez-Zelaia P and Neu RW: ‘Influence of notch severity on thermomechanical fatigue life of a directionally solidified Ni-base superalloy’, Fatigue Fract. Eng. Mater. Struct., 2014, 37, 854–865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.