55
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A Review of Selected Engineered Nanoparticles in the Atmosphere: Sources, Transformations, and Techniques for Sampling and Analysis

Pages 488-507 | Published online: 19 Jul 2013

References

  • Oberdorster G, Oberdorster, E. Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspec. 2005; 113 (7): 823.
  • Hood E. Nanotechnology: Looking as we leap. Environ Health Perspec. 2004; 112 (13): A740–A749.
  • Tsuji, JS, Maynard AD, Howard PC, James JT, Lam C, Warheit DB, Santamaria AB. Research strategies for safety evaluation of nanomaterials, part W: Risk assessment of nanoparticles. Toxi-col Sci. 2006; 89 (1): 42–50.
  • Stone V, Johnston H, Clift MJD. Air pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Trans Nanobiosci. 2007: 6 (4): 331–340.
  • Meyer DE, Curran MA, Gonzalez MA. An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol. 2009; 43 (5): 1256–1263.
  • Englert BC. Nanomaterials and the environment: Uses, methods and measurement. J Environ Monit. 2007; 9 (11): 1154–1161.
  • Cass, GR, Hughes LA, Bhave P, Kleeman MJ, Allen JO, Salmon LG. The chemical composition of atmospheric ultrafine parti-cles. Phil Trans Royal Soc A. 2000; 358 (1775) 2581–2592.
  • Niessner R. Chemical Characterization of aerosols-Online and in situ. Angew Chem (International Edition in English). 1991; 30 (5): 466–476.
  • Auffan M, Rose J, Wiesner MR, Bottero J-Y Chemical stability of metallic nanoparticles: A parameter controlling their poten-tial cellular toxicity in vitro. Environ Poll. 2009; 157 (4): 1127–1133.
  • Adamson IYR, Prieditis H, Vincent R. Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicol Appl Pharmacol. 1999; 157 (1): 43–50.
  • von Klot S, Wilke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, Kreyling WG, Wichmann FIE, Peters A. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J. 2002; 20 (3): 691–702.
  • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007; 150 (1): 5–22.
  • Kittelson DB. Engines and nanoparticles: A review. J Aerosol Sci. 1998; 29(5-6): 575–588.
  • US Environmental Protection Agency (EPA). Nanotechnology white paper. EPA100/B-07/001. Washington, DC: EPA; 2007.
  • US Environmental Protection Agency (EPA). Nanomaterials research strategy. EPA 620/K-09/011. Washington DC: EPA; 2009.
  • Hedrick JB. Rare earths. In: Minerals Yearbook. Vol I: Metals and Minerals. United States Geological Survey (USGS): Reston, VA; 1998.
  • Reff A, Bhave PV, Simon H, Pace TG, Pouliot GA, Mobley JD, Houyoux M. Emissions inventory of PM2.5 trace elements across the United States. Environ Sci Technol. 2009. 43 (15) 5790–5796.
  • Reinhardt K, Winkler H. Cerium mischmetal, cerium alloys, and cerium compounds. In: Ullmann's encyclopedia of indus-trial chemistry. Vol. A6. Weinheim, Germany: Wiley-VCH; 1996
  • Costatini M. Evaluation of human health risk from cerium added to diesel fuel. Boston, MA: Health Effects Institute; 2001.
  • Corma A, Atienzar P, Garcia H, Chane-Chingy Y. Hierarchically mesostructured doped Ce02 with potential for solar-cell use. Nat Mater. 2004; 3 (6): 394–397.
  • Pati RK, Lee IC, Chu DR, Hou SC, Ehrman S.H. Nanosized ceria-based water-gas shift (WGS) catalyst for fuel cell applica-tions. Abst of the Amer Chem Soc. 2004; 228: 220.
  • Jung HJ, Kittelson DB, Zachariah MR The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust and Flame. 2005; 142 (3): 276–288.
  • Cerulean International Limited. 211b Submission Tier 1 Sum-mary Report for EnviroxTM, non-confidential version, 2005.
  • Guo MN, Guo CX, Jin LY, Lu JQ, Luo MF. Nano-sized Ce02 with extra-high surface area and its activity for CO oxidation. Mat Let. 2010; 64 (14): 1638–1640.
  • Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, McGinnis J, Seal S. Nanoceria as antioxi- dant: Synthesis and biomedical applications. J Miner Metal Mater Soc. 2008; 60 (3): 33–37.
  • Machida M, Murata Y, Kishikawa K, Zhang D, Ikeue K. On the reasons for high activity of Ce02 catalyst for soot oxidation. Chem of Mater. 2008; 20 (13): 4489–4494.
  • Ntainjua E, Taylor SH. The catalytic total oxidation of poly-cyclic aromatic hydrocarbons. Top in Catalysis. 2009; 52 (5): 528–541.
  • Simonsen SB, Dahl S, Johnson E, Helveg S. Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J Catalysis. 2008; 255 (1): 1–5.
  • Lahaye J, Boehm S, Chambrion Ph., Ehrburger P. Influence of cerium oxide on the formation and oxidation of soot. Combust and Flame. 1996; 104(1-2): 199–207.
  • Summers JC, Van Houtte S, Psaras D. Simultaneous control of particulate and NOx emissions from diesel engines. Appl Catalyis B: Environ. 1996. 10: 139–156.
  • Okuda T, Schauer JJ, Olson MR, Shafer MM, Rutter AP, Walz KA, Morshauser PA. Effects of a platinum-cerium bimetallic fuel additive on the chemical composition of diesel engine exhause particles. Energy & Fuels. 2009; 23: 4874–4980.
  • Skillas G, Qian Z, Baltensperger U, Matter U, Burtscher H. The influence of additives on the size distribution and composition of particles produced by diesel engines. Combust Sci Technol. 2000; 154: 259–273.
  • Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanocerium. Bio-mater. 2008; 29: 2705–2709.
  • Cervini-Silva J, Fowle D, Banfield JF. Biogenic dissolution of soil ceriumphosphate minerals. Am J Sci. 2005; 305: 711–726.
  • Kiser MA, Westerhoff P, Benn T, Wang T, Perez-Rivera J, Hris-tovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol. 2009. 43, 6757–6763.
  • Klaine SJ, Pedro, Alvarez JJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. Nanoma-terials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008; 27 (9): 1825–1851.
  • Daniels SL On the qualities of the air as affected by radiant energies (photocatalytic ionization processes for remediation of indoor environments). J Environ Engineer Sci. 2007; 6 (3): 329-342.
  • Besov AS, Krivova NA, Vorontsov AV, Zaeva OB, Kozlov DV, Vorozhtsov AB, Parmon VN, Sakovich GV, Komarov VF, Smirniotis PG, Eisenreich N. Air detoxification with nanosize TiO2 aerosol tested on mice. J Hazard Mater. 2010; 173: 40–46.
  • Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Appl Catalysis A: Gen. 2009. 359: p. 25–40.
  • Yang Z-P, Zhang, C-J. Mechanism and kinetics of Pb(II) adsorp-tion on ultrathin nanocrystalline titania coatings removal of lead from wastewater. J Hazard Mater. 2009; 172: 1082–1086.
  • Narr J, Viraraghavan T, Jin Y-C. Applications of nanotechnology in water/wastewater treatment: A Review. Fresnius Environ Bull. 2007; 16 (4): 320–329.
  • Bang JJ, Murr LE, Esquivel EV. Collection and characterization of airborne nanoparticulates. Mater Characterization. 2004; 52 (1): 1–14.
  • Murr LE, Esquivel EV, Bang JJ. Characterization of nanostruc-ture phenomena in airborne particulate aggregates and their potential for respiratory health effects. J Mater Sci-Mater in Medicine. 2004; 15 (3): 237–247.
  • Cass, GR, Hughes LA, Bhave P, Kleeman MJ, Allen JO, Salmon LG. The chemical composition of atmospheric ultrafine parti-cles. Phil Trans Royal Soc A. 2000; 358 (1775) 2581–2592.
  • Murr LE, Soto KF, Garza KM, Guerrero PA, Martinez F, Esquivel EV, Ramirez DA, Shi Y, Bang JJ, Venzor J. Combustion-generated nanoparticulates in the El Paso, TX, USA / Juarez, Mexico metroplex: Their comparative characterization and potential for adverse health effects. Inter J Environ Res Pub Health. 2006; 3: 48–66.
  • Berges M, Mohlmann B, Swennen W, Rompaey P, Berghmans P. Workplace exposure characterization Ti02nanoparticle pro-duction. In: Proceedings of the 3rd International Symposium on Nanotechnology, Occupational and Environmental Health. Taipei, Taiwan; 2006.
  • Chen LX, Rajh T, Wang Z, Thurnauer MC. XAFS studies of sur-face structures of TiO2 nanoparticles and photocatalytic reduc-tion of metal ions. J Phys Chem B. 1997; 101 (50): 10688–10697.
  • Jang, HD, Kim SK, Kim SJ. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photo-catalytic properties. J Nanopart Res. 2001; 3(2-3): 141–147.
  • Jung KY, Park SB. Anatase-phase titania-Preparation by embedding silica and photocatalytic activity for the decompo-sition of trichloroethylene. J Photochem Photobiol A-Chem. 1999; 127: 117.
  • Fox MA, Dulay MT. Heterogeneous photocatalysis. Chem Rev. 1993; 93 (1): 341–357.
  • Liqiang J, Baifu X, Fulong Y, Baiqi W, Keying S, Weimin C, Honggang E Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or S02. Appl Catalysis A-Gen. 2004; 275(1-2): 49–54.
  • Egerton TA, Mattinson JA. Comparison of photooxidation and photoreduction reactions on TiO2 nanoparticles. J Photochem Photobiol A-Chem. 2007; 186(2-3): 115–120.
  • Williams DS, Shukla MK, Ross J. Particulate matter emission by a vehicle running on unpaved road. Atmos Environ. 2008; 42 (16) : 3899–3905.
  • Chianelli RR, Ydcaman MJ, Arenas J, Aldape E Atmospheric nanoparticles in photocatalytic and thermal production of atmospheric pollutants. J Hazard Sub Res. 1998; 1: 1.
  • Murr LE, Bang JJ, Lopez DA, Guerrero PA, Esquivel EV, Choudhuri AR, Subramanya M, Morandi M, Holian A. Carbon nanotubes and nanocrystals in methane combustion and the environmental implications. J Mater Sci. 2004; 39 (6): 2199–2204.
  • Bang JJ, Guerrero PA, Lopez DA, Murr LE, Esquivel EV. Carbon nanotubes and other fullerene nanocrystals in domes-tic propane and natural gas combustion streams. J Nanosci Nanotechnol. 2004; 4 (7): 716–718.
  • Helland A, Scheringer M, Siegrist M, Kastenholz HG, Wiek A, Scholz RW. Risk assessment of engineered nanomaterials: A survey of industrial approaches. Environ Sci Technol. 2008; 42 (2): 640–646.
  • Langa F, Nierengarten J-F, Eds. Fullerenes: Principles and applications. Cambridge, UK: Royal Society of Chemistry; 2007.
  • Quadros ME, Marr LC. Environmental and human health risks of airborne silver nanoparticles. J Air Waste Manage Assoc. 2010; 60 (7): 770–781.
  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007; 168 (2): 121–131.
  • Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science. 1991; 254: 1183-1185.
  • Markus A, Nairz 0, Voss-Andreae J, Keller C, van der Zouw G, Zeilinger A. Wave-particle duality of C60. Nature. 1999; 401: 680–682.
  • Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez A. Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res. 2004; 6(2-3): 241–251.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Tox-icol Sci. 2006; 92 (1): 5–22.
  • Xu YJ, Li J.Q. The interaction of N-2 with active sites of a single-wall carbon nanotube. Chem Phys Lett. 2005; 412(4-6): 439–443.
  • Ulbricht H, Moos G, Hertel T. Interaction of molecular oxygen with single-wall carbon nanotube bundles and graphite. Sur-face Sci. 2003; 532: 852–856.
  • Goldoni A, Larciprete R, Petaccia L, Lizzit S. Single-wall carbon nanotube interaction with gases: Sample contaminants and environmental monitoring. J Amer Chem Soc. 2003; 125 (37): 11329–11333.
  • Chibante LPF, Heymann D. On the geochemistry of fullerenes-stability of C60 in ambient air and the role of ozone. Geochimica Et Cosmochimica Acta. 1993; 57: 1879-1881.
  • Scanlon JC, Brown JM, Ebert LB. Oxidative stability of fullerenes. J Phys Chem. 1994; 98: 3921–3923.
  • Cataldo, E Ozone reaction with carbon nanostructures 1: Reac-tion between solid G60 and G70 fullerenes and ozone. J Nanosci Nanotechnol. 2007; 7: 1439-1445.
  • Watanabe H, Matsui E, Ishiyama Y, Senna M. Solvent free mechanochemical oxygenation of fullerene under oxygen atmosphere. Tetrahed Lett. 2007; 48: 8132–8137.
  • Theron J, Walker JA, Cloete TE. nanotechnology and water treatment: Applications and emerging opportunities. Grid Rev Microbiol. 2008; 34: 43–69.
  • Health Canada. A review of chemical additives present in diesel fuels used in Canada and the United States of America. Ottawa, Ontario, Canada; 2006.
  • Miller A, Ahlstrand G, Kittelson D, Zachariah M. The fate of metal (Fe) during diesel combustion: Morphology, chemistry, and formation pathways of nanoparticles. Combust and Flame. 2007; 149(1-2): 129–143.
  • Lee D, Miller A, Kittelson D, Zachariah MR. Characterization of metal-bearing diesel nanoparticles using single-particle mass spectrometry. J Aero Sci. 2006; 37 (1): 88–110.
  • Zhang J, Megaridis CM. Soot suppression by ferrocene in lam-inar ethylene/air nonpremixed flames. Combust and Flame. 1996; 105 (4): 528–540.
  • Maynard AD, Ku BK, Emery M, Stolzenburg M, McMurry PH. Measuring particle size-dependent physicochemical structure in airborne single walled carbon nanotube agglomerates. J Nanopart Res. 2007; 9 (1): 85–92.
  • Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol. 2009; 43 (12) : 4555–4560.
  • Keenan CR, Sedlak DL. Ligand-enhanced reactive oxidant gen-eration by nanoparticulate zero-valent iron and oxygen. Envi-ron Sci Technol. 2008; 42 (18): 6936–6941.
  • Auffan M, Achouak W, Rose J, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner WR, Bottero JY. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coll. Environ Sci Technol. 2008; 42 (17) : 6730–6735.
  • Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed sci-entific papers. Sci Total Environ. 2010; 408: 999–1006.
  • Luoma S N. Silver nanotechnologies and the environment: Old problems or new challenges? Washington, DC: Woodrow Wilson International Center for Scholars; 2008
  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 2010; 44 (4): 1260–1266.
  • Shin, WG, Wang J, Mertler M, Sachweh B, Fissan H, Pui DYH. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: Relationship to particle mobility analysis. J Nanopart Res. 2009; 11 (1): 163–173.
  • McMahon MD, Lopez R, Meyer III HM, Feldman LC, HaglundJrRF. Rapid tarnishing of silver nanoparticles in ambient labo-ratory air. Appl Phys B: Lasers and Optics. 2005; 80 (7): 915–921.
  • Tobias HJ, Beving DE, Ziemann PJ, Sakurai H, Zuk M, McMurry PH, Zarling D, Waytulonis R, Kittelson DB. Chemical analysis of diesel engine nanoparticles using a nano-DMA/ thermal desorption particle beam mass spectrometer. Environ Sci Technol. 2001; 35 (11): 2233–2243.
  • Shi JP, Harrison RM. Investigation of ultrafine particle forma-tion during diesel exhaust dilution. Environ Sci Technol. 1999; 33 (21) : 3730–3736.
  • Shi JP, Mark D, Harrison RM. Characterization of particles from a current technology heavy-duty diesel engine. Environ Sci Technol. 2000; 34 (5): 748–755.
  • Peters TM, They S, Johnson R, Park H, Grassian VH, Maher T,O'Shaughnessy PT. Airborne monitoring to distinguish engi-neered nanomaterials from incidental particles for environmen-tal health and safety. J Occup Environ Hyg. 2009; 6 (2): 73–81.
  • Burdett GJ, Rood AP. Membrane-filter, direct-transfer tech-nique for the analysis of asbestos fibers or other inorganic par- tides by transmission electron microscopy. Environ Sci Tech-nol. 1983; 17 (11): 643–648.
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee S-B, Ji JH,Cho MH, Yu IJ. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol. 2008; 20 (8): 741–749.
  • National Institute for Occupational Safety and Health (NIOSH). NIOSH Methods 7402: Asbestos by TEM. [Internet]. Available from: http://www.cdc.gov/niosh/docs/2003-154/pdfs/7402.pdf.
  • Park B, Donaldson K, Duffin R, Tran L, Kelly F, Mudway I, Morin J-P, Guest R, Jenkinson P, Samaras Z, Giannouli M, Kouridis H, Martin P. Hazard and risk assessment of a nanopar-ticulate cerium oxide-based diesel fuel additive - A case study. Inhal Toxicol. 2008; 20 (6): 547–566.
  • Jang J, Akin D, Lim KS, Broyles S, Ladisch MR, Bashir R. Cap-ture of airborne nanoparticles in swirling flows using non-uni-form electrostatic fields for bio-sensor applications. Sensors and Actuators B-Chem. 2007; 121 (2): 560–566.
  • Dahl A, Gharibi A, Swietlicki E, Gudmundsson A, Bohgard M, Ljungman A, Blomqvist G, Gustafsson M. Traffic-generated emissions of ultrafine particles from pavement-tire interface. Atmos Environ. 2006; 40 (7): 1314–1323.
  • Ku BK, Maynard AD. Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aero Sci. 2006; 37 (4): 452–470.
  • Siegmann K, Scherrer L, Siegmann HC. Physical and chemical properties of airborne nanoscale particles and how to measure the impact on human health. J Mol Struct-Theochem. 1999; 458(1-2): 191–201.
  • Qian ZQ, Siegmann K, Keller A, Matter U, Scherrer L, Sieg-mann HC. Nanoparticle air pollution in major cities and its origin. Atmos Environ. 2000; 34 (3): 443–451.
  • Murr LE, Soto KF. A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combus-tion sources. Mater Characterization. 2005; 55 (1): 50–65.
  • Murr LE, Soto KF, Esquivel EV, Bang JJ, Guerrero PA, Lopez DA, Ramirez DA. Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study. J Mater Sci. 2004; 56 (6): 28–31.
  • Fang GC, Wu YS, Wen CC, Lin GK, Huang SH, Rau JY, Lin CP. Concentrations of nano and related ambient air pollutants at a traffic sampling site. Toxicol Ind Health. 2005; 21 (10): 259–271.
  • Grose M, Sakurai H, Savstrom J, Stolzenburg MR, Watts WF, Morgan CG, Murray IP, Twigg NW, Kittelson DB, McMurry PH. Chemical and physical properties of ultrafine diesel exhaust particles sampled downstream of a catalytic trap. Environ Sci Technol. 2006; 40 (17): 5502–5507.
  • Ntziachristos L, Ning Z, Geller MD, Sheesley RJ, Schauer JJ, Sioutas C. Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmos Environ. 2007; 41 (27): 5684–5696.
  • Fushimi A, Hasegawa S, Takahashi K, Fujitani Y, Tanabe K, Kobayashi S. Atmospheric fate of nuclei-mode particles esti-mated from the number concentrations and chemical compo-sition of particles measured at roadside and background sites. Atmos Environ. 2008; 42 (5): 949–959.
  • Fujitani Y, Kobayashi T. Measurement of aerosols in engi-neered nanomaterials factories for risk assessment. Nano. 2008; 3 (4): 245–249.
  • Chen BT, Cheng YS, Yeh HC, Bechtold WE, Finch GL. Tests of the size resolution and sizing accuracy of the Lovelace parallel flow diffusion battery. Amer Ind Hyg Assoc J. 1991; 52 (2): 75–80.
  • Cheng YS, Yeh HC. Analysis of screen diffusion battery data. Am Ind Hyg Assoc J. 1984; 45: 556–561.
  • Cheng YS, Yeh HC, Newton GJ. Sampling in tandem with other instruments. In: LodgeJPJr and Chan TL, eds. Cascade impactor: Sampling and analysis. Akron, OH: American Indus-trial Hygiene Association; 1986.
  • Barr EB, Cheng YS, Yeh HC, Wolff RK. Size characterization of carbonaceous particles using a Lovelace multijet cascade impactor/parallel-flow diffusion battery serial sampling train. Aero Sci Technol. 1989; 10: 1205–1212.
  • Shi JP, Evans DE, Khan AA, Harrison RM. Sources and concentration of nanoparticles ( 10 nm diameter) in the urban atmosphere. Atmos Environ. 2001; 35 (7): 1193–1202.
  • Minoura H, Takekawa H. Observation of number concentrations of atmospheric aerosols and analysis of nanoparticle behavior at an urban background area in Japan. Atmos Envi-ron. 2005; 39 (32): 5806–5816.
  • Watson JG, Chow JC, Lowenthal DH, Kreisberg NM, Hering SV, Stolzenburg MR. Variations of nanoparticle concentrations at the Fresno Supersite. Sci Total Environ. 2006; 358(1-3): 178–187.
  • Yeganeh B, Kull CM, Hull MS, Marr LC. Characterization of airborne particles during production of carbonaceous nano-materials. Environ Sci Technol. 2008; 42 (12): 4600–4606.
  • Jacobson MZ, Kittelson DB, Watts WF. Enhanced coagulation due to evaporation and its effect on nanoparticle evolution. Environ Sci Technol. 2005; 39 (24): 9486–9492.
  • Charron A, Harrison RM. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmos Environ. 2003; 37 (29): 4109–4119.
  • Gramotnev DK, Gramotnev G. A new mechanism of aerosol evolution near a busy road: Fragmentation of nanoparticles. J Aero Sci. 2005; 36 (3): 323–340.
  • Mathis U, Kaegi R, Mohr M, Zenobi R. TEM analysis of volatile nanoparticles from particle trap equipped diesel and directinjection spark-ignition vehicles. Atmos Environ. 2004; 38 (26): 4347–4355.
  • Watson JG, Chow JC, Park K, Lowenthal DH. Nanoparticle and ultrafine particle events at the Fresno Supersite. J Air Waste Manage Assoc. 2006; 56 (4): 417–430.
  • Higgins KJ, Jung H, Kittelson DR, Roberts JT, Zachariah MR. Kinetics of diesel nanoparticle oxidation. Environ Sci Technol. 2003; 37 (9): 1949–1954.
  • Zhao B, Yang Z, Wang J, Johnston MV, Wang H. Analysis of soot nanoparticles in a laminar premixed ethylene flame by scan-ning mobility particle sizer. Aero Sci Technol. 2003; 37 (8): 611–620.
  • US Environmental Protection Agency (EPA). EPA Federal Test Procedure (FTP). [Internet, accessed 2010 July]. Available from: http://www.epa.gov/otaq/standards/light-duty/ftp.htm.
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxi-city of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004; 77 (1): 126–134.
  • Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T. Comparison of IMPROVE and NIOSH carbon measurements. Aero Sci Technol. 2001; 34 (1): 23–34.
  • Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Iijima S. Photoluminescence mapping of “as-grown” single-walled carbon nanotubes: A comparison with micelle-encapsulated nanotube solutions. Nano Lett. 2005; 5 (12): 2618–2623.
  • Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Oyama Y, Saito R, Iijima S. Photoluminescence and population analy-sis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chem Phys Lett. 2006; 420 (4-6) : 286–290.
  • Jones M, Engtrakul C, Metzger WK, Ellingson RJ, Nozik AJ, Heben MJ, Rumbles G. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys Rev B. 2005; 71 (11).
  • Jones M, Metzger WK, McDonald TJ, Engtrakul C, Ellingson RJ, Rumbles G, Heben MJ. Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett. 2007; 7 (2): 300–306.
  • Tantra R, Cumpson P. The detection of airborne carbon nan-otubes in relation to toxicology and workplace safety. Nan-otoxicol. 2007; 1 (4): 251–265.
  • Majestic BJ, Shafer MM. EXAFS spectroscopy of platinum in diesel exhaust particles. Unpublished data, 2006.
  • Spence JCH. High-resolution electron microscopy. 3rd ed. Monographs on the physics and chemistry of materials. New York, NY,: Oxford University Press; 2003.
  • Wang SY, Zordan CA, Johnston MV. Chemical characterization of individual, airborne sub-10-nm particles and molecules. Anal Chem. 2006; 78 (6): 1750–1754.
  • Wang R, Crozier PA, Sharma R. Structural transformation in ceria nanoparticles during redox processes. J Phys Chem C. 2009; 113 (14): 5700–5704.
  • Amelinckx S, Lucas A, Lambin P. Electron diffraction and microscopy of nanotubes. Rep on Prog in Phys. 1999; 62 (11): 1471–1524.
  • Biro LP, Gyulai J, Lambin P, Nagy JB, Lazarescu S, Mark GI, Fonseca A, Surján PR, Szekeres Z, Thiry PA, Lucas AA. Scan-ning tunneling microscopy (STM) imaging of carbon nan-otubes. Carbon. 1998; 36(5-6): 689–696.
  • Tsang SC, de Oliveira P, Davis JJ, Green MLH, Hill HAO. The structure of the carbon nanotube and its surface topography probed by transmission electron microscopy and atomic force microscopy. Chem Phys Lett. 1996; 249(5-6): 413–422.
  • Zhang Y, Yang M, Ozkan M, Ozkan CS. Magnetic force microscopy of iron oxide nanoparticles and their cellular uptake. Biotechnol Prog. 2009; 25 (4): 923–928.
  • Volodin A, Ahlskog M, Seynaeve E, Van Haesendonck C, Fon-seca A, Nagy JB. Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy. Phys Rev Lett. 2000; 84 (15): 3342–3345.
  • Singjai P, Songmee N, Tunkasiri T, Vilaithong T. Atomic force microscopy imaging and cutting of beaded carbon nanotubes deposited on glass. Surface Interface Anal. 2002; 33(10-11): 900–904.
  • Johnston MV, Wang SY, Reinard MS. Nanoparticle mass spec-trometry: Pushing the limit of single particle analysis. Appl Spectrosc. 2006; 60 (10): 264A-272A.
  • Zordan CA, Wang S, Johnston MV. Time-resolved chemical composition of individual nanoparticles in urban air. Environ Sci Technol. 2008; 42 (17): 6631–6636.
  • Wang SY, Johnston MV. Airborne nanoparticle characteriza-tion with a digital ion trap-reflection time of flight mass spec-trometer. Intern J Mass Spect. 2006; 258(1-3): 50–57.
  • Smith JN, Dunn MJ, VanReken TM, Iida K, Stolzenburg MR, McMurry PH, Huey LR. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanopar-tide growth. Geophys Res Lett. 2008; 35: L04808.
  • Hughes LS, Cass GR, Gone J, Ames M, Olmez I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ Sci Technol. 1998; 32 (9): 1153–1161.
  • Hu S, Polidori A, Arhami M, Shafer MM, Schauer JJ, Cho A, Sioutas C. Redox activity and chemical speciation of size frac-tioned PM in the communities of the Los Angeles-Long Beach Harbor. Atmos Chem Phys. 2008; 8 (21): 6439–6451.
  • Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, Blot, WJ. A cohort mortality study among tita-nium dioxide manufacturing workers in the United States. J Occup Environ Med. 2003; 45 (4): 400–409.
  • Murr LE, Bang JJ. Electron microscope comparisons of fine and ultra-fine carbonaceous and non-carbonaceous, airborne particulates. Atmos Environ. 2003; 37 (34): 4795–4806.
  • Posfai M, Anderson JR, Buseck PR, Sievering H. Soot and sul-fate aerosol particles in the remote marine troposphere. J Geo-phys Res Atmos. 1999; 104(D17): 21685–21693.
  • Chow JC, Watson JG, Edgerton SA, Vega E. Chemical composi-tion of PM2.5 and PM10 in Mexico City during Winter 1997. Sci Total Environ. 2002; 287 (3): 177–201.
  • Lee S-H, Murphy DM, Thomson DS, Middlebrook AM. Chem-ical components of single particles measured with particle analysis by laser mass spectrometry (PALMS) during the Atlanta Supersite Project: Focus on organic/sulfate, lead, soot, and mineral particles. J Geophys Res. 2002; 107(D1-D2): 4003.
  • Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J of Nanopart Res. 2005; 7 (6): 587–614.
  • Ono-Ogasawara M, Serita F, Takaya M. Distinguishing nanoma-terial particles from background airborne particulate matter for quantitative exposure assessment. J Nanopart Res. 2009; 11 (7): 1651–1659.
  • Tsai S-J, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol. 2009; 43: 6017–6023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.