Publication Cover
Redox Report
Communications in Free Radical Research
Volume 6, 2001 - Issue 4
3,049
Views
43
CrossRef citations to date
0
Altmetric
Reviews

Role of haptoglobin in free hemoglobin metabolism

, , &
Pages 219-227 | Published online: 19 Jul 2013

  • Everse J, Hsia N. The toxicities of native and modified hemoglobins. Free Radic Biol Med 1997; 22: 1075–1099.
  • Halliwell B, Guttericlge JM. Free Radicals in Biology and Medicine, 3rd edn. Oxford: Oxford University Press, 1999.
  • Alayash Al. Hemoglobin-based blood substitutes and the hazards of blood radicals. Free Radic Res 2000; 33:341–348.
  • Hess JR, Macdonald VW, Brinidey WW Systemic and pulmonary hypertension after resuscitation with cell-free hemoglobin. J Appl Physiol 1993; 74: 1769-1778.
  • Jia L, Bonaventura C, Bonaventura J, Stamler JS. S- nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996; 380: 221–226.
  • Macdonald VW, Winslow RM, Marini MA, Klinker MT. Coronary vasoconstrictor activity of purified and modified human hemoglobin. Biomater Artif Cells Artif Organ 1989; 18: 263–282.
  • Olson JS. Stopped-flow, rapid mixing measurements of ligand binding to hemoglobin and red cells. Methods Enzymol 1981; 76: 631–651.
  • Savitsky JP, Doczi J, Black J, Arnold JD. A clinical safety trial of stroma-free hemoglobin Clin Phannacol Ther 1978; 23: 73–80.
  • Thompson A, McGarry AE, Valeri CR, Lieberthal W. Stroma-free hemoglobin increases blood pressure and GFR in the hypotensive rat: role of nitric oxide. J Appl Physiol 1994; 77: 2348-2354.
  • Toothill C. The chemistry of the in vivo reaction between haemoglobin and various oxides of nitrogen. Br J Anaesth 1967; 39:405–412.
  • Vogel WM, Dennis RC, Cassidy G, Apstein CS, Valeri CR. Coronary constrictor effect of stroma-free hemoglobin solutions. Am J Physiol 1986; 251: H413–H420.
  • Bowman BH, Kurosky A. Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet 1982; 12: 189–261.
  • McCormick DJ, Atassi MZ. Hemoglobin binding with haptoglobin: delineation of the haptoglobin binding site on the alpha-chain of human hemoglobin J Protein Chem 1990; 9: 735-742.
  • Anderton R. Hemolysis and haptoglobin levels. N Engl J Med 1971; 284: 1044.
  • Marchand A, Galen RS, Van Lente E The predictive value of serum haptoglobin in hemolytic disease. JAMA 1980; 243: 1909–1911.
  • Tabbara IA. Hemolytic anemias. Diagnosis and management Med Clin North Am 1992; 76: 649–668.
  • Warkentin DL, Marchand A, Van Lente E Serum haptoglobin concentrations in concurrent hemolysis and acute-phase reaction. Clin Chem 1987; 33: 1265–1266.
  • Wilke G, Rath W, Schutz E, Armstrong VW, Kuhn W. Haptoglobin as a sensitive marker of hemolysis in HELLP-syndrome. Int J Gynaecol Obstet 1992; 39: 29–34.
  • Gemer-Smidt P, Friedrich U, Petersen GB, Tischfield JA. A balanced translocation t(11; 16) (q13; p11), a cytogenetic study and an attempt at gene localization Hum Genet 1978; 42: 61-66.
  • Bensi G, Raugei G, Klefenz H, Cortese R Structure and expression of the human haptoglobin locus. EMBO J 1985; 4: 119–126.
  • Maeda N, McEvoy SM, Harris HF, Huisman TH, Smithies O. Polymornhisms in the human haptoglobin gene cluster: chromosomes with multiple haptoglobin-related (Hpr) genes. Proc Natl Acad Sci USA 1986; 83:7395–7399.
  • Marinkovic S, Baumann H. Structure, hormonal regulation, and identi-fication of the interleukin-6- and dexamethasone-responsive element of the rat haptoglobin gene. Mol Cell Biol 1990; 10: 1573–1583.
  • Yang F, Linehan LA, Friedrichs WE, Lalley PA, Sakaguchi AY, Bowman BH. Characterization of the mouse haptoglobin gene. Genomics 1993; 18: 374–380.
  • Maeda N. DNA polymornhisms in the controlling region of the human haptoglobin genes: a molecular explanation for the haptoglobin 2-1 modified phenotype. Am J Hum Genet 1991;49: 158–166.
  • Oliviero S, DeMarchi M, Carbonara AO, Bemire LF, Bensi G, Raugei G. Molecular evidence of triplication in the haptoglobin Johnson valiant gene. Hum Genet 1985; 71:49–52.
  • Marles SL, McAlpine PJ, Zelinski T, Phillips S, Maeda N, Greenberg CR. Identification of an uncommon haptoglobin type using DNA and protein analysis. Hum Genet 1993; 92: 364–366.
  • Yang F, Brune JL, Baldwin WD, Barnett DR, Bowman BH. Identification and characterization of human haptoglobin cDNA. Proc Natl Acad Sci USA 1983; 80:5875–5879.
  • van der Straten A, Herzog A, Cabezon T, Bollen A. Characterization of human haptoglobin cDNAs coding for alpha 2FS beta and alpha is beta variants. FEBS Lett 1984; 168: 103–107.
  • Haugen TH, Hanley JM, Heath EC. Haptoglobin. A novel mode of biosynthesis of a liver secretory glycoprotein. J Biol Chem 1981; 256: 1055–1057.
  • Thompson S, Dargan E, Turner GA. Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer. Cancer Lett 1992; 66: 43–48.
  • Hanley JM, Haugen TH, Heath EC. Biosynthesis and processing of rat haptoglobin J Biol Chem 1983; 258:7858–7869.
  • Mann AC, Record CO, Self CH, Turner GA. Monosaccharide composition of haptoglobin in liver diseases and alcohol abuse: large changes in glycosylation associated with alcoholic liver disease. Clin Chim Acta 1994; 227: 69–78.
  • Kaartinen V, Mononen L Hemoglobin binding to deglycosylated haptoglobin Biochim Biophys Acta 1988; 953:345–352.
  • Nilsson B, Lowe M, Osada J, Ashwell G, Zopf D. The carbohydrate structure of human haptoglobin 1-1. In: Yamakawa Tea. (ed) Glycoconjugates. Proc. 6th hit. Sym. Glyco. Tokyo: Japan Scientific Societies Press, 1981; 275–276.
  • Hanley JM, Heath EC. A novel proteolytic activity in serum processes rat prohaptoglobin. Arch Biochem Biophys 1985; 239:404–419.
  • Goldstein LA, Heath EC. Nucleotide sequence of rat haptoglobin cDNA. Characterization of the alpha beta-subunit junction region of prohaptoglobin. J Biol Chem. 1984; 259: 9212–9217.
  • Chow V, Kurosky A, Murray RIC. Studies on the biosynthesis of rabbit haptoglobin J Biol Chem 1984; 259: 6622–6629.
  • Hooper DC, Peacock AC. Determination of the subunit composition of haptoglobin 2-1 polymers using quantitative densitometry of polyacrylamide gels. J Biol Chem 1976; 251: 5845–5851.
  • Pastewka JV, Ness AT, Peacock AC. Hemoglobin binding by isolated polymeric proteins from human haptoglobin types 2-1 and 2-2. Some suggested polymer subunit compositions. Biochim Biophys Acta 1975; 386: 530–537.
  • Lustbader JW, Arcoleo JP, Birken S, Greer J. Hemoglobin-binding site on haptoglobin probed by selective proteolysis. J Biol Chem 1983; 258: 1227–1234.
  • Wejman JC, Hovsepian D, Wall JS, Hainfeld JF, Greer J. Structure of haptoglobin and the haptoglobin-hemoglobin complex by electron microscopy. J Mol Biol 1984; 174: 319–341.
  • Greer J, Liao WD, Brown WE. Haptoglobin-hemoglobin complex. Subunit interaction probed by cross-linking. J Biol Chem 1981; 256: 8771–8774.
  • Yoshioka N, Atassi MZ. Haemoglobin binding with haptoglobin. Localization of the haptoglobin-binding sites on the beta-chain of human haemoglobin by synthetic overlapping peptides encompassing the entire chain. Biochem J 1986; 234: 453–456.
  • Javid J. Human haptoglobins. Cul?. Top Hematol 1978; 1: 151–192.
  • Langlois MR, Delanghe JR. Biological and clinical significance of hapto-globin polymorphism in humans. Clin Chem 1999; 42: 1589-1600.
  • Oshiro S, Yajima Y, Kawamura K et al. Catabolism of hemoglobin-haptoglobin complex in microsome subfractions. Chem Phann Bull 1992; 40:1847–1851.
  • Oshiro S, Nakajima H. Intrahepatocellular site of the catabolism of heme and globin moiety of hemoglobin-haptoglobin after intravenous administration to rats. J Biol Chem 1988; 263: 16032–16038.
  • Keene WR, Jandl JII. The sites of hemoglobin catabolism. Blood 1%5; 26: 705-719.
  • Weinstein MB, Segal HL. Uptake of free hemoglobin by rat liver parenchymal cells. Biochem Biophys Res Commun 1984; 123: 489–496.
  • Osada J. Elimination from rat circulation of goat and sheep haptoglobin and their complexes with rat haemoglobin Acta Biochim Pol 1988; 35: 169–175.
  • Osada J, Nowacki W. Elimination of goat haemoglobin and its complexes with goat haptoglobin from goat and rat circulation. Acta Biochim Pol 1989; 36:365–369.
  • Lim SK, Kim H, Ali A et al. Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 1998; 92: 1870–1877.
  • Lim YK, Jenner A, Ali AB et al. Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis. Kidney Int 2000; 58: 1033–1044.
  • Glassock RJ. Hematuria and pigmenturia. In: Massry SG, Glasock RJ. (eds) Textbook of Nephrology, vol. 1, 2nd edn. Baltimore: Williams and Wilkins, 1995; 557-566.
  • Tam SC, Wong JT. Impairment of renal function by stroma-free hemoglobin in rats. flab Clin Med 1988; 111: 189–193.
  • Alayash Al. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat Biotechnol 1999; 17: 545–549.
  • Miller YI, Smith A, Morgan WE, Shaldai N. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry 1996; 35: 13112–13117.
  • Miller YI, Shaldai N. Oxidative crosslinking of LDL protein induced by hemin: involvement of tyrosines. Biochem Mol Biol hu 1994; 34: 1121–1129.
  • Miller YI, Altamentova SM, Shaldai N. Oxidation of low-density lipoprotein by hemoglobin stems from a heme-initiated globin radical: antioxidant role of haptoglobin. Biochemistry 1997; 36: 12189–12198.
  • Miller YI, Felikman Y, Shaldai N. The involvement of low-density lipoprotein in hemin transport potentiates peroxidative damage. Biochim Biophys Acta 1995; 1272: 119–127.
  • Vercellotti GM, Balla G, Balla J, Nath K, Eaton JW, Jacob HS. Heme and the vasculature: an oxidative hazard that induces antioxidant defenses in the endothelium. Artif Cells Blood Substit Immobil Biotechnol 1994; 22: 207–213.
  • Halliwell B, Gutteridge JM. The antioxidants of human extracellular fluids. Arch Biochem Biophys 1990; 280: 1–8.
  • Gutteridge JM, Smith A. Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem J 1988; 256: 861–865.
  • Gutteridge JM. The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochim Biophys Acta 1987; 917: 219–223.
  • Lim SK, Kim H, Lim SK et al. Increased susceptibility in Hp knockout mice during acute hemolysis. Blood 1998; 92: 1870–1877.
  • Balla G, Jacob HS, Eaton JW, Belcher JD, Vercellotti GM. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial injury. Arterioscler Thromb 1991; 11: 1700–1711.
  • Paganga G, Rice-Evans C, Andrews B, Leake D. Oxidised low density lipoproteins convert oxyhaemoglobin from ruptured erythro-cytes to reactive ferry' forms. Biochem Soc Trans 1992; 20: 331S.
  • Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic Fenton reagent. J Biol Chem 1984; 259: 14354–14356.
  • Morrow JD, Hill ICE, Burk RF, Nammour TM, Badr ICF, Roberts LJD. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Nati Acad Sci USA 1990; 87:9383–9387.
  • Fukunaga M, Makita N, Roberts LJD, Morrow JD, Takahashi K, Badr ICF. Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am J Physiol 1993; 264: C1619–C1624.
  • Hoffman SW, Moore S, Ellis EE Isoprostanes: free radical-generated prostaglandins with constrictor effects on cerebral arterioles. Stroke 1997; 28: 844-849.
  • Kang KH, Morrow JD, Roberts LJD, Newman JH, Banerjee M. Airway and vascular effects of 8-epi-prostaglandin F2 alpha in isolated perfused rat lung. J Appl Physiol 1993; 74: 460-465.
  • Kromer BM, Tippins JR. Coronary artery constriction by the isoprostane 8-epi prostaglandin F2 alpha. Br J Phannacol 1996; 119: 1276–1280.
  • Lahaie I, Hardy P, Hou X et al. A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2 alpha on retinal vessels. Am J Physiol 1998; 274: R1406-R1416.
  • Longmire AW, Roberts LJ, Morrow JD. Actions of the E2-isoprostane, 8-ISO-PGE2, on the platelet thromboxane/endoperoxide receptor in humans and rats: additional evidence for the existence of a unique isoprostane receptor. Prostaglandins 1994; 48:247–256.
  • Moore KP, Holt SG, Patel RP et al. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem 1998; 273: 31731–31737.
  • Truog WE, Norberg M, Thibeault DW. Effects of 8-epi-prostaglandin F2 alpha and U46,619 on pulmonary hemodynamics in piglets. Biol Neonate 1997; 71: 306–316.
  • Wagner RS, Weare C, Jin N, Mohler ER, Rhoades RA. Character-ization of signal transduction events stimulated by 8-epi-prostaglandin (PG)F2 alpha in rat aortic rings. Prostaglandins 1997; 54:581–599.
  • Davies MJ. Identification of a globin free radical in equine myoglobin treated with peroxides. BiochimBiophys Acta 1991; 1077: 86–90.
  • Davies MJ, Puppo A. Direct detection of a &bin-derived radical in leghaemoglobin treated with peroxides. Biochem J 1992; 281: 197–201.
  • Flynn TP, Allen DW, Johnson GJ, White JG. Oxidant damage of the lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease. Evidence for the role of lipid perwddation. J Gun Invest 1983; 71: 1215–1223.
  • Giulivi C, Cadenas E Heme protein radicals: formation, fate, and biological consequences. Free Radic Biol Med 1998; 24: 269–279.
  • Kelder PP, de Mol NJ, Fischer MJ, Janssen LH. Kinetic evaluation of the oxidation of phenothiazine derivatives by methemoglobin and horseradish perwddase in the presence of hydrogen peroxide. Implications for the reaction mechanisms. Biochim Biophys Acta 1994; 1205: 230–238.
  • Lissi EA, Escobar J, Pascual C, del Castillo M, Schmitt TH, Di Mascio P. Visible chemiluminescence associated with the reaction between methemoglobin or oxyhemoglobin with hydrogen peroxide. Photochem Photobiol 1994; 60: 405–411.
  • Miller YI, Felikman Y, Shaldai N. Hemoglobin induced apolipo-protein B crosslinking in low-density lipoprotein perwddation. Arch BiochemBiophys 1996; 326:252–260.
  • Nohl H, Stoke K. Chemiluminescence from activated heme compounds detected in the reaction of various xenobiotics with oxyhemoglobin: comparison with several heme/hydrogen peroxide systems. Free Radic Biol Med 1993; 15: 257–263.
  • Yoo YM, Kim KM, Kim SS, Han JA, Lea HZ, Kim YM. Hemoglobin toxicity in experimental bacterial peritonitis is due to production of reactive oxygen species. Clin Diagn Lab Immunol 1999; 6: 938–945.
  • Dizdaroglu M, Aruoma 01, Halliwell B. Modification of bases in DNA by copper ion-1,10-phenanthroline complexes. Biochemistry 1990; 29: 8447–8451.
  • Halliwell B. Can oxidative DNA damage be used as a biomarker of cancer risk in humans? Problems, resolutions and preliminary results from nutritional supplementation studies. Free Radic Res 1998; 29: 469–486.
  • Jenner A, England TG, Aruoma 01, Halliwell B. Measurement of oxidative DNA damage by gas chromatography-mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases. Biochem J 1998; 331: 365–369.
  • Mori T, Tano K, Takimoto K, Utsumi H. Formation of 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-fonnamidopyrimidine in DNA by riboflavin mediated photosensitization. Biochem Biophys Res Commun 1998; 242: 98–101.
  • Douki T, Cadet J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Radic Res 1996; 24: 369–380.
  • Spencer JP, Whiteman M, Jenner A, Halliwell B. Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radic Biol Med 2000; 28: 1039–1050.
  • Whiteman M, Jenner A, Halliwell B. Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem Res Toxicol1997; 10: 1240-1246.
  • Creteur J, Sibbald W, Vincent JL. Hemoglobin solutions - not just red blood cell substitutes. Crit Care Med 2000; 28: 3025–3034.
  • Nakai K, Ohta T, Sakuma l et al. Inhibition of endothelium-dependent relaxation by hemoglobin in rabbit aortic strips: comparison between acellular hemoglobin derivatives and cellular hemoglobins. J Cardiovasc Phannacol1996; 28: 115-123.
  • Borland C. Endothelium in control. Br Heart J 1991; 66:405.
  • Carlsen E, Comroe JHJ. The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J Gen Physiol 1958; 42: 83–107.
  • Kelm M, Feelisch M, Spahr R et al. Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 1988; 154: 236–244.
  • Wagner CT, Durante W, Christodoulides N, Hellums JD, Schafer Al. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J Clin Invest 1997; 100: 589–596.
  • Buckley C, Bund SJ, McTaggart F, Bruckdorfer KR, Oldham A, Jacobs M. Oxidized low-density lipoproteins inhibit endothelium-dependent relaxations in isolated large and small rabbit coronary arteries. J Auton Phannacol1996; 16: 261-267.
  • Galle J, Bassenge E, Busse R. Oxidized low density lipoproteins potentiate vasoconstrictions to various agonists by direct interaction with vascular smooth muscle. Circ Res 1990; 66: 1287–1293.
  • Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Ohta Y, Yasue H. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium-dependent relaxation. Am J Physiol 1994; 267: 112441–H2449.
  • Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 1994; 16: 383–391.
  • Zou M11, Bachschmid M. Hypoxia-reoxygenation triggers coronary vasospasm in isolated bovine coronary arteries via tyrosine nitration of prostacyclin synthase. J Exp Med 1999; 190: 135–139.
  • Ostrowski RS, Travis JC, Talley ES. The association of Hp 1 and sickle cell disease. Hum Hered 1987; 37: 193–195.
  • Quaye IK, Ekuban FA, Goka BQ et al. Haptoglobin 1-1 is associated with susceptibility to severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 2000; 94:216-219.
  • Elagib AA, Kider AO, Akerstrom B, Elbashir MI. Association of the haptoglobin phenotype (1-1) with falciparum malaria in Sudan. Trans R Soc Trop Med Hyg 1998; 92:309–311.
  • Mizushima Y, Kato H, Ohmae H, Tanaka T, Bobogare A, Ishii A. Relationship of haptoglobin polymorphism to malaria in the Solomon Islands. Intern Med 1995; 34: 342–346.
  • Joshi H, Raghavendra K, Subbarao SK, Ansari MA, Razdan RK, Batra CP. Genetic markers in refractory and susceptible malaria patients in village Bhanera, Distt. Ghaziabad, UP. Indian J Malariol 1991;28: 161–165.
  • Joshi H, Raghavendra K, Subbarao SK, Shama VP. Genetic markers in malaria patients of Delhi. Indian J Malariol 1987; 24:33–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.