Publication Cover
Redox Report
Communications in Free Radical Research
Volume 12, 2007 - Issue 6
168
Views
2
CrossRef citations to date
0
Altmetric
Review

Diabetes and the heart: could the diabetic myocardium be protected by preconditioning?

, , , , &
Pages 246-256 | Published online: 19 Jul 2013

REFERENCES

  • Holt RI. Diagnosis, epidemiology and pathogenesis of diabetes mellitus: an update for psychiatrists. Br J Psychiatry Suppl 2004; 47: S55–563.
  • Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047–1053.
  • Marre M. Genetics and the prediction of complications in type 1 diabetes. Diabetes Care 1999; 22 (Suppl 2): B53–B58.
  • Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404: 787–790.
  • Du X, Matsumura T, Edelstein D et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112: 1049–1057.
  • Poornima IG, Parikh P. Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 2006; 98: 596–605.
  • Chevion M. A site-specific mechanism for free radical induced biological damage: the essential role of redox-active transition metals. Free Radic Biol Med 1988; 5: 27–37.
  • Chevion M. Protection against free radical-induced and transition metal-mediated damage: the use of ‘pull’ and ‘push’ mechanisms. Free Radic Res Commun 1991; 12/13: 691–696.
  • Samuni A, Aronovitch J, Godinger D, Chevion M, Czapski G. On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism. Eur J Biochem 1983; 137: 119–124.
  • Tuomainen TP, Punnonen K, Nyyssonen K, Salonen JT. Association between body iron stores and the risk of acute myocardial infarction in men. Circulation 1998; 97: 1461–1466.
  • Trigwell SM, Radford PM, Page SR et a/. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus. Clin Exp Immunol 2001; 126: 242–249.
  • Ward DT, Hamilton K, Burnand R, Smith CP, Tomlinson DR, Riccardi D. Altered expression of iron transport proteins in streptozotocin-induced diabetic rat kidney. Biochim Biophys Acta 2005; 1740: 79–84.
  • Cameron NE, Cotter MA. Effects of an extracellular metal chelator on neurovascular function in diabetic rats. Diabetologia 2001; 44: 621–628.
  • Negi A, Vernon SA. An overview of the eye in diabetes. J R Soc Med 2003; 96: 266–272.
  • Zhang Y, Lee ET, Devereux RB et al. Prehypertension, diabetes, and cardiovascular disease risk in a population-based sample: the Strong Heart Study. Hypertension 2006; 47: 410–414.
  • Goldberg II. Why does diabetes increase atherosclerosis? I don't know! J Clin Invest 2004; 114: 613–615.
  • Meigs JB, Larson MG, D'Agostino RB et al. Coronary artery calcification in type 2 diabetes and insulin resistance: the Framingham Offspring Study. Diabetes Care 2002; 25: 1313–1319.
  • Kim JK, Kim YJ, Fillmore JJ et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 2001; 108: 437–446.
  • Unger RH, Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord 2000; 24 (Suppl 4): S28–532.
  • Goldberg RB. Hyperlipidemia and cardiovascular risk factors in patients with type 2 diabetes. Am J Manage Care 2000; 6: S682-5691; discussion S692-S686.
  • Hayden JM, Reaven PD. Cardiovascular disease in diabetes mellitus type 2: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol 2000; 11: 519–528.
  • Schmidt AM, Hon O, Chen JX et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995; 96: 1395–1403.
  • Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med 1999; 340: 115–126.
  • Kruszewski M. The role of labile iron pool in cardiovascular diseases. Acta Biochim Pol 2004; 51: 471–480.
  • Cuzzocrea S, Zingarelli B, Costantino Get al. Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion. Br J Pharmacol 1997; 121: 1065–1074.
  • Knight JA. Free Radicals, Antioxidants, Aging and Disease. Washington, DC: AACC, 1999.
  • Matthews AJ, Vercellotti GM, Menchaca HJ et al. Iron and atherosclerosis: inhibition by the iron chelator deferiprone (L1). J Surg Res 1997; 73: 35–40.
  • Ponraj D, Makjanic J, Thong PS, Tan BK, Watt F. The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion. FEBS Lett 1999; 459: 218–222.
  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989; 320: 915–924.
  • Van Lenten BJ, Prieve J, Navab M, Hama S, Lusis AL Fogelman AM. Lipid-induced changes in intracellular iron homeostasis in vitro and in vivo. J Clin Invest 1995; 95: 2104–2110.
  • Lauffer RB. Iron stores and the international variation in mortality from coronary artery disease. Med Hypotheses 1991; 35: 96–102.
  • de Valk B, Marx JJ. Iron, atherosclerosis, and ischemic heart disease. Arch Intern Med 1999; 159: 1542–1548.
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74: 1124–1136.
  • Hawaleshka A, Jacobsohn E. Ischaemic preconditioning: mechanisms and potential clinical applications. Can J Anaesth 1998; 45: 670–682.
  • Zaugg M, Schaub MC. Signaling and cellular mechanisms in cardiac protection by ischemic and pharmacological preconditioning. J Muscle Res Cell Motil 2003; 24: 219–249.
  • Piot CA, Padmanaban D, Ursell PC, Sievers RE, Wolfe CL. Ischemic preconditioning decreases apoptosis in rat hearts in vivo. Circulation 1997; 96: 1598–1604.
  • Rezkalla SH, Kloner RA. Ischemic preconditioning and preinfarction angina in the clinical arena. Nat Clin Pract Cardiovasc Med 2004; 1: 96–102.
  • Schwarz ER, Reffelmann T, Kloner RA. Clinical effects of ischemic preconditioning. Curr Opin Cardiol 1999; 14: 340–348.
  • Kloner RA, Shook T, Przyklenk K et al. Previous angina alters in-hospital outcome in TIME 4. A clinical correlate to preconditioning? Circulation 1995; 91: 37–45.
  • Hirai T, Fujita M, Yamanishi K, Ohno A, Miwa K, Sasayama S. Significance of preinfarction angina for preservation of left ventricular function in acute myocardial infarction. Am Heart J 1992; 124: 19–24.
  • Nakagawa Y, Ito H, Kitakaze M et al. Effect of angina pectoris on myocardial protection in patients with reperfused anterior wall myocardial infarction: retrospective clinical evidence of ‘preconditioning’. J Am Coll Cardiol 1995; 25: 1076–1083.
  • Deutsch E, Berger M, Kussmaul WG, Hirshfeld Jr JW, Herrmann HC, Laskey WK. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 1990; 82: 2044–2051.
  • Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor to KATp channel. Annu Rev Physiol 2000; 62: 79–109.
  • Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res 2001; 52: 181–198.
  • Schaub MC, Hefti MA, Zuellig RA, Morano I. Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res 1998; 37: 381–404.
  • Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive IC* channels and myocardial preconditioning. Circ Res 1999; 84: 973–979.
  • Kim MY, Kim MJ, Yoon IS et al. Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondria' K(ATP) channel conferring cardioprotection against hypoxic injury. Br J Pharmacol 2006; 149: 1059–1070.
  • Nakano A, Cohen MV, Downey JM. Ischemic preconditioning: from basic mechanisms to clinical applications. Pharmacol Ther 2000; 86: 263–275.
  • Cohen MV. Efficacy of preconditioning should be gauged by reduction of infarction. Br J Pharmacol 2004; 141: 197–198.
  • Thornton JD, Thornton CS, Downey JM. Effect of adenosine receptor blockade: preventing protective preconditioning depends on time of initiation. Am J Physiol 1993; 265: H504–H508.
  • Hale SL, Bellows SD, Hammerman H, Kloner RA. An adenosine Al receptor agonist, R(-N-(2-phenylisopropyft-adenosine (PIA), but not adenosine itself, acts as a therapeutic preconditioning-mimetic agent in rabbits. Cardiovasc Res 1993; 27: 2140–2145.
  • Yao Z, Gross GJ. A comparison of adenosine-induced cardio-protection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATp channels. Circulation 1994; 89: 1229–1236.
  • Tomai F, Crea F, Gaspardone A et al. Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 1999; 33: 1863–1869.
  • Bienengraeber MW, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Cardioprotection by volatile anesthetics. Vasc Pharmacol 2005; 42: 243–252.
  • Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 2001; 103: 2935–2941.
  • Kloner RA, Rezkalla SH. Preconditioning, postconditioning and their application to clinical cardiology. Cardiovasc Res 2006; 70: 297–307.
  • Krieg T, Qin Q, McIntosh EC, Cohen MV, Downey JM. ACh and adenosine activate P13-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. Am J Physiol 2002; 283: H2322–H2330.
  • Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinosito1-3-1dnase upstream of protein kinase C. Circ Res 2000; 87: 309–315.
  • Oldenburg O, Qin Q, Krieg T et al. Bradykinin induces mitochondria' ROS generation via NO, cGMP, PKG, and mitoKAw channel opening and leads to cardioprotection. Am J Physiol 2004; 286: H468–H476.
  • Cohen MV. Heart Physiology and Pathophysiology. San Diego, CA: Academic Press, 2001; 867–885.
  • Carroll CM, Carroll SM, Overgoor ML, Tobin G, Barker JH. Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival. Plast Reconstr Surg 1997; 100: 58–65.
  • Lepore DA, Knight KR, Anderson RL, Morrison WA. Role of priming stresses and HSP70 in protection from ischemia-reperfusion injury in cardiac and skeletal muscle. Cell Stress Chaperones 2001; 6: 93–96.
  • Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol 1992; 24: 895–907.
  • Currie RW, Tanguay RM. Analysis of RNA for transcripts for catalase and HSP71 in rat hearts after in vivo hyperthermia. Biochem Cell Biol 1991; 69: 375–382.
  • Paraskevaidis IA, Iliodromitis EK, Mavrogeni S et al. Repeated exercise stress testing identifies early and late preconditioning. Int J Cardiol 2005; 98: 221–226.
  • Maybaum S, Ilan M, Mogilevsky J, Tzivoni D. Improvement in ischemic parameters during repeated exercise testing: a possible model for myocardial preconditioning. Am J Cardiol 1996; 78: 1087–1091.
  • Crisafulli A, Melis F, Tocco F et al. Exercise-induced and nitroglycerin-induced myocardial preconditioning improves hemodynamics in patients with angina. Am J Physiol 2004; 287: H235–H242.
  • Tomai F. Warm up phenomenon and preconditioning in clinical practice. Heart 2002; 87: 99–100.
  • Ovunc K. Effects of glibenclamide, a K(ATP) channel blocker, on warm-up phenomenon in type 11 diabetic patients with chronic stable angina pectoris. Clin Cardiol 2000; 23: 535–539.
  • Tomai F, Danesi A, Ghini AS et al. Effects of K(ATP) channel blockade by glibenclamide on the warm-up phenomenon. Eur Heart J 1999; 20: 196–202.
  • Tomai F, Crea F, Danesi A et al. Effects of Al adenosine receptor blockade on the warm-up phenomenon. Cardiologia 1997; 42: 385–392.
  • Gaspardone A, Crea F, Iamele M et al. Bamiphylline improves exercise-induced myocardial ischemia through a novel mechanism of action. Circulation 1993; 88: 502–508.
  • Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 1995; 77: 611–621.
  • Correa SD, Schaefer S. Blockade of K(ATP) channels with glibenclamide does not abolish preconditioning during demand ischemia. Am J Cardiol 1997; 79: 75–78.
  • Kelion AD, Webb TP, Gardner MA, Ormerod OJ, Shepherd GL, Banning AP. Does a selective adenosine A(1) receptor agonist protect against exercise induced ischaemia in patients with coronary artery disease? Heart 2002; 87: 115–120.
  • Heinzel FR, Luo Y, Li X et al. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in cormexin 43 deficient mice. Circ Res 2005; 97: 583–586.
  • Gray MO, Zhou HZ, Schafhalter-Zoppoth I, Zhu P, Mochly-Rosen D, Messing RO. Preservation of base-line hemodynamic function and loss of inducible cardioprotection in adult mice lacking protein kinase C epsilon. J Biol Chem 2004; 279: 3596–3604.
  • Ferdinandy P. Szilvassy Z, Horvath LI et al. Loss of pacing-induced preconditioning in rat hearts: role of nitric oxide and cholesterol-enriched diet. J Mol Cell Cardiol 1997; 29: 3321–3333.
  • Hashimi MW, Thornton JD, Downey JM, Cohen MV. Loss of myocardial protection from ischemic preconditioning following chronic exposure to R(-N6-(2-phenylisopropyl)adenosine is related to defect at the adenosine Al receptor. Mol Cell Biochem 1998; 186: 19–25.
  • Tani M, Honma Y, Takayama M et al. Loss of protection by hypoxic preconditioning in aging Fischer 344 rat hearts related to myocardial glycogen content and Na* imbalance. Cardiovasc Res 1999; 41: 594–602.
  • Burns PG, Krunkenkamp 1B, Calderone CA, Kirvaitis RJ, Gaudette GR, Levitsky S. Is the preconditioning response conserved in senescent myocardium? Ann Thorac Surg 1996; 61: 925–929.
  • Fenton RA, Dickson EW, Meyer TE, Dobson JG Jr. Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol 2000; 32: 1371–1375.
  • Lyons D, Roy S. Patel M, Benjamin N, Swift CG. Impaired nitric oxide-mediated vasodilatation and total body nitric oxide production in healthy old age. Clin Sci (Lond) 1997; 93: 519–525.
  • Taylor RP, Starnes JW. Age, cell signalling and cardioprotection. Acta Physiol Scand 2003; 178: 107–116.
  • Izumi Y, Kim S, Murakami T, Yamanaka S, Iwao H. Cardiac mitogen-activated protein kinase activities are chronically increased in stroke-prone hypertensive rats. Hypertension 1998; 31: 50–56.
  • Stone PH, Muller JE, Hartwell T et al. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. The MILIS Study Group. J Am Coll Cardiol 1989; 14: 49–57.
  • Ghosh S, Standen NB, Galinianes M. Failure to precondition pathological human myocardium. J Am Coll Cardiol 2001; 37: 711–718.
  • Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M. Mitochondria' dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 2006; 69: 450–458.
  • Klepzig H, Kober G, Matter C et al. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999; 20: 439–446.
  • Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation 2001; 103: 3111–3116.
  • Loubani M, Fowler A, Standen NB, Galinanes M. The effect of gliclazide and glibenclamide on preconditioning of the human myocardium. Eur J Pharmacol 2005; 515: 142–149.
  • Mangalmurti SS, Farkouh ME. Cardiovascular disease in diabetics: pharmacology and revascularization. Mt Sinai J Med 2004; 71: 375–383.
  • Mak KH, Moliterno DJ, Granger CB et a/. Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol 1997; 30: 171–179.
  • Evans JM, Wang J, Morris AD. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. BMJ 2002; 324: 939–942.
  • Tani M, Neely JR. Hearts from diabetic rats are more resistant to in vitro ischemia: possible role of altered Ca' metabolism. Circ Res 1988; 62: 931–940.
  • Ravingerova T, Stetka R, Volkovova K et al. Acute diabetes modulates response to ischemia in isolated rat heart. Mol Cell Biochem 2000; 210: 143–151.
  • Monteiro P, Goncalves L, Providencia LA. Diabetes and cardiovascular disease: the road to cardioprotection. Heart 2005; 91: 1621–1625.
  • Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol 2000; 278: H1218–H1224.
  • Lu R, Hu CP, Peng J, Deng HW, Li YJ. Role of calcitonin gene-related peptide in ischaemic preconditioning in diabetic rat hearts. Clin Exp Pharmacol Physiol 2001; 28: 392–396.
  • Hearse DJ, Stewart DA, Chain EB. Diabetes and the survival and recovery of the anoxic myocardium. J Mol Cell Cardiol 1975; 7: 397–415.
  • Ingebretsen CG, Moreau P, Hawelu-Johnson C, Ingebretsen WR, Jr. Performance of diabetic rat hearts: effects of anoxia and increased work. Am J Physiol 1980; 239: H614–H620.
  • Mokuda O, Sakamoto Y, Ikeda T, Mashiba H. Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats. Ann Nutr Metab 1990; 34: 259–265.
  • Tsang A, Hausenloy DJ, Mocanu MM, Can RD, Yellon DM. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 2005; 54: 2360–2364.
  • Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW. Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation 1993; 88: 1273–1278.
  • Tatsumi T, Matoba S, Kobara M et al. Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic rat hearts. J Am Coll Cardiol 1998; 31: 707–715.
  • Hadour G, Ferrera R, Sebbag L, Forrat R, Delaye J, de Lorgeril M. Improved myocardial tolerance to ischaemia in the diabetic rabbit. J Mol Cell Cardiol 1998; 30: 1869–1875.
  • Chen H, Shen WL, Wang XH et al. Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity. Clin Exp Pharmacol Physiol 2006; 33: 910–916.
  • Ferreira BM, Moffa PJ, Falcao A et al. The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon. Ann Noninvasive Electrocardiol 2005; 10: 356–362.
  • Huupponen R. Adverse cardiovascular effects of sulphonylurea drugs. Clinical significance. Med Toxicol 1987; 2: 190–209.
  • Cleveland Jr JC, Meldrum DR, Cain BS, Banerjee A, Harken AH. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 1997; 96: 29–32.
  • Scognamiglio R, Avogaro A, Vigili de Kreutzenberg S et al. Effects of treatment with sulfonylurea drugs or insulin on ischemia-induced myocardial dysfunction in type 2 diabetes. Diabetes 2002; 51: 808–812.
  • Hueb W, Uchida AM, Gersh BJ et al. Effect of a hypoglycemic agent on ischemic preconditioning in patients with type 2 diabetes and stable angina pectoris. Coron Artery Dis 2007; 18: 55–59.
  • Negroni JA, Lascano EC, del Valle HF. Glibenclamide action on myo-cardial function and arrhythmia incidence in the healthy and diabetic heart. Cardiovasc Hematol Agents Med Chem 2007; 5: 43–53.
  • Gustafsson I, Hildebrandt P. Seibaek M et al. Long-term prognosis of diabetic patients with myocardial infarction: relation to antidiabetic treatment regimen. The TRACE Study Group. Eur Heart J 2000; 21: 1937–1943.
  • Bouchard JF, Lamontagne D. Protection afforded by preconditioning to the diabetic heart against ischaemic injury. Cardiovasc Res 1998; 37: 82–90.
  • Qi JS, Kam KW, Chen M, Wu S, Wong TM. Failure to confer cardioprotection and to increase the expression of heat-shock protein 70 by preconditioning with a kappa-opioid receptor agonist during ischaemia and reperfusion in streptozotocin-induced diabetic rats. Diabetologia 2004; 47: 214–220.
  • Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004; 61: 448–460.
  • Oliveira PJ, Rob o AP, Seica R et a/. Impact of diabetes on induction of the mitochondrial permeability transition. Rev Port Cardiol 2002; 21: 759–766.
  • Huisamen B. Protein kinase B in the diabetic heart. Mol Cell Biochem 2003; 249: 31–38.
  • Steiler TL, Galuska D, Leng Y, Chibalin AV, Gilbert M, Zierath JR. Effect of hyperglycemia on signal transduction in skeletal muscle from diabetic Goto-Kakizaki rats. Endocrinology 2003; 144: 5259–5267.
  • Strniskova M, Barancik M, Neckar J, Ravingerova T. Mitogen-activated protein kinases in the acute diabetic myocardium. Mol Cell Biochem 2003; 249: 59–65.
  • del Valle HF, Lascano EC, Negroni JA, Crottogini AJ. Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATp channel dysfunction. Mol Cell Biochem 2003; 249: 21–30.
  • Smith JM, Wahler GM. ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic rats. Mol Cell Biochem 1996; 158: 43–51.
  • Shimoni Y, Light PE, French RJ. Altered ATP sensitivity of ATP-dependent K+ channels in diabetic rat hearts. Am J Physiol 1998; 275: E568–E576.
  • Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 1991; 69: 571–581.
  • Woodall A, Bracken N, Qureshi A, Howarth FC, Singh J. Halothane alters contractility and Ca' transport in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 2004; 261: 251–261.
  • David JS, Tavernier B, Amour J, Vivien B, Coriat P. Riou B. Myocardial effects of halothane and sevoflurane in diabetic rats. Anesthesiology 2004; 100: 1179–1187.
  • Amour J, David JS, Vivien B, Coriat P, Riou B. Interaction of halogenated anesthetics with alpha- and beta-adrenoceptor stimulations in diabetic rat myocardium. Anesthesiology 2004; 101: 1145–1152.
  • Graham M, Qureshi A, Noueihed R, Harrison S, Howarth FC. Effects of halothane, isoflurane, sevoflurane and desflurane on contraction of ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 2004; 261: 209–215.
  • Rithalia A, Qureshi MA, Howarth FC, Harrison SM. Effects of halothane on contraction and intracellular calcium in ventricular myocytes from streptozotocin-induced diabetic rats. Br J Anaesth 2004; 92: 246–253.
  • Joyeux M, Faure P, Godin-Ribuot D et al. Heat stress fails to protect myocardium of streptozotocin-induced diabetic rats against infarction. Cardiovasc Res 1999; 43: 939–946.
  • Hooper PL, Hooper JJ. Loss of defense against stress: diabetes and heat shock proteins. Diabetes Technol Ther 2005; 7: 204–208.
  • Shinohara T, Takahashi N, Ooie T et al. Phosphatidylinositol 3-kinase-dependent activation of Akt, an essential signal for hyperthermia-induced heat-shock protein 72, is attenuated in streptozotocin-induced diabetic heart. Diabetes 2006; 55: 1307–1315.
  • Atalay M, Oksala NK, Laaksonen DE et al. Exercise training modulates heat shock protein response in diabetic rats. J Appl Physiol 2004; 97: 605–611.
  • Noble EG, Moraska A, Mazzeo RS et al. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training. J Appl Physiol 1999; 86: 1696–1701.
  • Tappia PS, Dent MR, Dhalla NS. Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic Biol Med 2006; 41: 349–361.
  • Song Y, Wang J, Li Y et al. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol 2005; 167: 17–26.
  • Berenshtein E, Vaisman B, Goldberg-Langerman C, Kitrossky N, Konijn AM, Chevion M. Roles of ferritin and iron in ischemic preconditioning of the heart. Mol Cell Biochem 2002; 234/235: 283–292.
  • Kramer JH, Lightfoot FG, Weglicki WB. Cardiac tissue iron: effects on post-ischemic function and free radical production, and its possible role during preconditioning. Cell Mol Biol (Noisy-le-grand) 2000; 46: 1313–1327.
  • Farhangkhoee H, Khan ZA, Mukherjee S et al. Heme oxygenase in diabetes-induced oxidative stress in the heart. J Mol Cell Cardiol 2003; 35: 1439–1448.
  • Nitenberg A, Ledoux S, Valensi P. Sachs R, Antony I. Coronary microvascular adaptation to myocardial metabolic demand can be restored by inhibition of iron-catalyzed formation of oxygen free radicals in type 2 diabetic patients. Diabetes 2002; 51: 813–818.
  • Karck M, Tanaka S, Berenshtein E, Sturm C, Haverich A, Chevion M. The push-and-pull mechanism to scavenge redox-active transition metals: a novel concept in myocardial protection. J Thorac Cardiovasc Surg 2001; 121: 1169–1178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.