Publication Cover
Redox Report
Communications in Free Radical Research
Volume 17, 2012 - Issue 1
8,705
Views
107
CrossRef citations to date
0
Altmetric
Review article

NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns

, , &
Pages 28-46 | Published online: 19 Jul 2013

References

  • Elvehjem C, Madden R, Strong F, Woolley D. Relation of nicotinic acid and nicotinic acid amide to canine black tongue. J Am Chem Soc 1937;59:1767–8.
  • Elvehjem C. Pellagra – a deficiency disease. Proc Am Philos Soc 1949;93:335–9.
  • Broer S, JA C, Rasko J. Neutral amino acid transport in epithelial cells and its malfunction in Hartnup disorder. Biochem Soc Trans 2005;33:233–6.
  • Monteiro J, da Cunha D, Filho D, SilvaVergara M, dos Santos V, da Costas J , et al. Niacin metabolite excretion in alcholic pellagra and AIDS patients with and without diarrhea. Nutrition 2004;20:778–82.
  • Comaish J, Felix R, McGrath H. Topically applied niacinamide in ioniazid-induced pellagra. Arch Dermatol 1976;112:70–2.
  • Penberthy WT. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease. Curr Drug Metab 2007;8:245–66.
  • Brown RR, Ozaki Y, Datta SP, Borden EC, Sondel PM, Malone DG. Implications of interferon-induced tryptophan catabolism in cancer, auto-immune diseases and AIDS. Adv Exp Med Biol 1991;294:425–35.
  • Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem Sci 2004;29:111–8.
  • Schlenk F, von Euler H. Cozymase. Naturwissenschaften 1936;24:794–5.
  • Warburg O, Christian W. Pyridin, der wasserstoffubertragende Bestandteil von Garungsfermenten (Pyridin-Nucleotide). Biochem Z 1936;287:291–328.
  • Magni G, Orsomando G, Raffelli N, Ruggieri S. Enzymology of mammalian NAD metabolism in health and disease. Front Biosci 2008;13:6135–54.
  • Kornberg A. The participation of inorganic pyrophosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide. J Biol Chem 1948;176:1475–6.
  • Rizzi M, Schindelin H. Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis. Curr Opin Struct Biol 2002;12:709–20.
  • Chambon P, Weill J, Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesising nuclear enzyme. Biochem Biophys Res Commun 1963;11:39–43.
  • Gholson RK. The pyridine nucleotide cycle. Nature 1966;212:933–4.
  • Rechsteiner M, Catanzarite V. The biosynthesis and turnover of nicotinamide adenine dinucleotide in enucleated culture cells. J Cell Physiol 1974;84:409–22.
  • Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S. Structure and function of nicotinamide mononucleotide adenylyltransferase. Curr Med Chem 2004;11:873–85.
  • Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol 1999;73:135–82, xi.
  • Khan JA, Forouhar F, Tao X, Tong L. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin Ther Targets 2007;11:695–705.
  • Houtkooper R, Canto C, Wanders R, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010;31:194–223.
  • Braidy N, Guillemin G, Grant R. Promotion of cellular NAD+ anabolism: therapeutic potential for oxidative stress in ageing and Alzheimer's disease. Neurotox Res 2008;13:173–84.
  • Mackay GM, Forrest CM, Stoy N, Christofides J, Egerton M, Stone TW, et al. Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur J Neurol 2006;13:30–42.
  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 2006;8:1–27.
  • Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H, et al. Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-gamma-independent mechanism. Eur J Immunol 2001;31:2313–8.
  • Guillemin GJ, Smith DG, Williams K, Smythe GA, Dormont D, Brew BJ. β amyloid peptide 1–42 induces human macrophages to produce the neurotoxin quinolinic acid. J Neuroimmunol 2001;118:112, A:336.
  • Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, et al. HIV-1 inhibits CD4+ T cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 2006;109:3351–9.
  • Frumento G, Piazza T, Di Carlo E, Ferrini S. Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets 2006;6:233–7.
  • De Castro F, Price J, Brown R. Reduced triphophopyridine-nucleotide requirement for the enzymatic formation of 3-hydroxykynurenine from L-kynurenine. J Am Chem Soc 1956;78:2904–5.
  • Mason M. The kynurenine transaminase of rat kidney. J Biol Chem 1954;211:839–44.
  • Wiss O, Fuchs H. Uber den Abbau von Kynurenin, Oxykynurenin und verwandten Substanzen durch Rattenleberenzym. Experientia (Basel) 1950;6:472–3.
  • Bokman AH, Schweigert BS. 3-Hydroxyanthranilic acid metabolism. IV. Spectrophotometric evidence for the formation of an intermediate. Arch Biochem Biophys 1951;33:270–6.
  • Mehler A, May F. Studies with carboxyl-labelled 3-hydroxyanthranilic acid and picolinic acid in vivo and in vitro. J Biol Chem 1956;223:449–55.
  • Cao H, Pietrak BL, Grubmeyer C. Quinolinate phosphoribosyltransferase: kinetic mechanism for a type II PRTase. Biochemistry 2002;41:3520–8.
  • Connick JH, Stone TW. Quinolinic acid effects on amino acid release from the rat cerebral cortex in vitro and in vivo. Br J Pharmacol 1988;93:868–76.
  • Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 1998;95:15730–4.
  • Boegman RJ, el-Defrawy SR, Jhamandas K, Beninger RJ, Ludwin SK. Quinolinic acid neurotoxicity in the nucleus basalis antagonized by kynurenic acid. Neurobiol Aging 1985;6:331–6.
  • Coggan S, Smythe G, Bilgin A, Grant R. Age and circadian influences on picolinic acid concentrations in human cerebrospinal fluid. J Neurochem 2009;108:1220–5.
  • Guidetti P, Schwarcz R. 3-Hydroxykynurenine and quinolinate: pathogenic synergism in early grade Huntington's disease? Adv Exp Med Biol 2003;527:137–45.
  • Morita T, Saito K, Takemura M, Maekawa N, Fujigaki S, Fujii H, et al. 3-Hydroxyanthranilic acid, an L-tryptophan metabolite, induces apoptosis in monocyte-derived cells stimulated by interferon-gamma. Ann Clin Biochem 2001;38:242–51.
  • Guillemin GJ, Brew BJ, Noonan CE, Knight TG, Smythe GA, Cullen KM. Mass spectrometric detection of quinolinic acid in microdissected Alzheimer's disease plaques. In: , Takai K(ed.) International Congress Series. 2007. Elsevier B.V., Amsterdam. p. 404–8.
  • Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus. Neuropathol Appl Neurobiol 2005;31:395–404.
  • Guillemin GJ, Brew BJ. Implications of the kynurenine pathway and quinolinic acid in Alzheimer's disease. Redox Rep 2002;7:199–206.
  • Guillemin GJ, Brew BJ. Chronic HIV infection leads to an Alzheimer's disease like illness. Involvement of the kynurenine pathway. In: , Takai K(ed.) International Congress Series. 2007. Elsevier B.V., Amsterdam. p. 324–34.
  • Guillemin GJ, Kerr SJ, Brew BJ. Involvement of quinolinic acid in AIDS dementia complex. Neurotox Res 2005;7:103–23.
  • Clark CJ, Mackay GM, Smythe GA, Bustamante S, Stone TW, Phillips RS. Prolonged survival of a murine model of cerebral malaria by kynurenine pathway inhibition. Infect Immun 2005;73:5249–51.
  • Guillemin G, Meininger V, Brew B. Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2006;2:166–76.
  • Chiarugi A, Cozzi A, Ballerini C, Massacesi L, Moroni F. Kynurenine 3-mono-oxygenase activity and neurotoxic kynurenine metabolites increase in the spinal cord of rats with experimental allergic encephalomyelitis. Neuroscience 2001;102:687–95.
  • Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J Neurosci 1991;11:1649–59.
  • Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, et al. Kynurenic acid concentrations are reduced in Huntington's disease cerebral cortex. J Neurol Sci 1992;108:80–7.
  • Chess AC, Simoni MK, Alling TE, Bucci DJ. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophrenia Bull 2007;33:797–804.
  • Schwarcz R. The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 2004;4:12–7.
  • Grant RS, Naif H, Thuruthyil SJ, Nasr N, Littlejohn T, Takikawa O, et al. Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent. J Virol 2000;74:4110–5.
  • Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol 2003;81:247–65.
  • Takikawa O, Yoshida R, Kido R, Hayaishi O. Tryptophan degredation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem 1986;261:3648–53.
  • Hansen AM, Ball HJ, Mitchell AJ, Miu J, Takikawa O, Hunt NH. Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int J Parasitol 2004;34:1309–19.
  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998;281:1191–3.
  • Alexander A, Crawford M, Bertera S, Rudert W, Takikawa O, Robbin P, et al. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft surviva; after adoptive transfer of diabetogenic splenocytes. Diabetes 2002;51:356–65.
  • Hayashi T, Beck L, Rossetto C, Gong X, Takikawa O, Takabayashi K, et al. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 2004;114:270–9.
  • Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9:1269–74.
  • Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004;10:15–8.
  • Grant RS, Passey R, Matanovic G, Smythe G, Kapoor V. Evidence for increased de novo synthesis of NAD in immune-activated RAW264.7 macrophages: a self-protective mechanism? Arch Biochem Biophys 1999;372:1–7.
  • Grant RS, Naif H, Espinosa M, Kapoor V. IDO induction in IFN-gamma activated astroglia: a role in improving cell viability during oxidative stress. Redox Rep 2000;5:101–4.
  • Grant R, Kapoor V. Inhibition of indoleamine 2,3-dioxygenase activity in IFN-gamma stimulated astroglioma cells decreases intracellular NAD levels. Biochem Pharmacol 2003;66:1033–6.
  • Iqbal J, Zaidi M. TNF regulates cellular NAD+ metabolism in primary macrophages. Biochem Biophys Res Commun 2006;342:1312–8.
  • Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. Bioessays 2003;25:683–90.
  • Khan JA, Tao X, Tong L. Molecular basis for inhibition of human NMPRTase, a novel target for anticancer agents. Nat Struct Mol Biol 2006;13:582–8.
  • Gross J, Rajavel M, Grubmeyer C. Kinetic mechanism of nicotinic acid phosphoribosyltransferase: implications for energy coupling. Biochem 1998;37:4189–99.
  • Bieganowski P, Brenner C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Priess-Handler independent route to NAD+ in fungi and humans. Cell 2004;117:495–502.
  • Grifantini M. Tiazofurine ICN Pharmaceuticals. Curr Opin Invest Drugs 2000;1:257–62.
  • Klaidman L, Morales M, Kem S, Yang J, Chang M, Adams J Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology 2003;69:150–7.
  • Wang B, Liao W, Chang C, Wang S. Facilitation of glutamate release by nicotine involves the activation of Ca2+/calmodulin signaling pathway in rat prefrontal cortex nerve terminals. Synapse 2006;59:491–501.
  • Belenky P, Racette F, Bogan KL, McClure J, Smith J, Brenner C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell 2005;129:473–84.
  • Burkle A, Beneke S, Muiras ML. Poly(ADP-ribosyl)ation and aging. Exp Gerontol 2004;39:1599–1601.
  • Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004;3:205–214.
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298–300.
  • Bechman K, Ames B. The free radical theory of aging matures. Physiol Rev 1998;78:547–81.
  • Shi Y, Buffenstein R, Pulliam D, Van R. Comparative studies of oxidative stress and mitochondrial function in aging. Integr Comp Biol 2010;50:869–79.
  • Oliveira M, Schoffen J. Oxidative stress action in cellular aging. Braz Arch Biol Tech 2010;53:1333–42.
  • Buffenstein R, Edrey Y, Yang T, Mele J. The oxidative stress theory of aging:embattled or invincible? Insights from non-traditional model organisms. AGE 2008;30:99–109.
  • Koc A, Gasch A, Rutherford J, Kim H, Gladyshev V. Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and independent components of aging. Proc Natl Acad Sci 2004;101:7999–8004.
  • Osiewacz H. Aging in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 2002;123:755–64.
  • Mates JM. Effects of antioxidant enzymes in molecular control of reactive oxygen species toxicology. Toxicology 2000;153:83–104.
  • Martin R, Chan C, Veurink G, Laws S, Croft K, Dharmarajan A. β-Amyloid and oxidative stress in the pathogenesis of Alzheimer's disease. In: , Basu T, Temple N, Garg M(eds.) Antioxidants in human health and disease. Oxford: CABI Publishing; 1999.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Murphy M. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1–13.
  • Halliwell B, Cutteridge J. Free radicals in biology and disease. Oxford: Oxford Science Pub; 1999.
  • Pentland A. Active oxygen mechanisms of UV inflammation. Adv Exp Med Biol 1994;366:87–97.
  • Koren H. Association between criteria air pollutants and asthma. Environ Health Perspect 1995;103:235–42.
  • Naito Y, Yoshikawa M, Yoshida A, Kondo M. Role of oxygen radical and lipid peroxidation in indomethacin-induced gastric mucosal injury. Dig Dis Sci 1998;43: 30S–4S.
  • Rav R, Mehrotra S, Shanker U, Babu G, Joshi P, Hanss R. Evaluation of UV-induced superoxide radical generation potential of some common antibiotics. Drug Chem Toxicol 2001;24:191–200.
  • Obata T, Yamanaka Y, Kinemuchi H, Oreland L. Release of dopamine by perfusion with 1-methyl-4-phenylpyridinium ion (MPP(+)) into the striatum is associated with hydroxyl free radical production generation. Brain Res 2001;906:170–5.
  • Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2001;30:620–50.
  • Meral A, Tuncel P, Surmen-Gur E, Ozbek R, Ozturk E, Gunay U. Lipid peroxidation and antioxidant status in beta-thalassemia. Pediatr Hematol Oncol 2000;17:687–93.
  • Davis K. Protein damage and degradation by oxygen radicals. J Biol Chem 1987;262:9895–901.
  • Grune T, Reinheckei T, Davies K. Degradation of oxidised proteins in mammalian cells. FASEB J 1997;11:526–34.
  • Ryberg H, Soderling AS, Davidsson P, Blennow K, Caidahl K, Persson LI. Cerebrospinal fluid levels of free 3-nitrotyrosine are not elevated in the majority of patients with amyotrophic lateral sclerosis or Alzheimer's disease. Neurochem Int 2004;45:57–62.
  • Halliwell B. Oxygen radicals as key mediators in neurological disease: Fact or fiction? Ann Neurol 1992;32:S10–15.
  • Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001;18:685–716.
  • Iida T, Furuta A, Kawashima M, Nishida J, Nakabeppu Y, Iwaki T. Accumulation of 8-oxo-2′-deoxyguanosine and increased expression of hMTH1 protein in brain tumors. Neuro-oncol 2001;3:73–81.
  • Huang X, Tanaka T, Kurose A, Traganos F, Darzynkiewicz Z. Constitutive histone H2AX phosphorylation on Ser-139 in cells untreated by genotoxic agents is cell-cycle phase specific and attenuated by scavenging reactive oxygen species. Int J Oncol 2006;29:495–501.
  • Tanaka T, Huang X, Halicka H, Zhao H, Traganos F, Albino A, et al. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A 2007;71:648–61.
  • Miquel M. The rate of DNA damage and ageing. In: , Emerit I, Button C(eds.) Free radicals in ageing. Basel, Switzerland: Birhauser Verlag; 1992.
  • Anderson RM, Bitterman KJ, Wood JG. Manipulation of nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 2002;277:18881–90.
  • Hassa P, Haenni S, Elser M, Hottiger M. Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going? Microbiol Mol Biol Rev 2006;70:789–829.
  • Kletzein R, Harris P, Foellmi L. Glucose-6-phosphate dehydrogenase: a ‘housekeeping’ enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 1994;8:174–81.
  • Berg JM, Tymockzo JL, Stryer L. Biochemistry. 6th ed. New York: Freeman; 2007.
  • Tzagoloff A. Mitochondria. New York: Plenum Press; 1982.
  • McCormack J, Denton R. The role of of Ca2+ in the regulation of intramitochondrial energy production in heart. Biomed Biochim Acta 1987;46:S487–92.
  • Marzulli D, La Piana G, Fransvea E, Lofrumento N. Modulation of cytochrome c-mediated extramitochondrial NADH oxidation by contact site density. Biochem Biophys Res Commun 1999;259:325–30.
  • La Piana G, Fransvea E, Marzulli D, Lofrumento N. Mitochondrial membrane potential supported by exogenous cytochrome c oxidation mimics the early stages of apoptosis. Biochem Biophys Res Commun 1998;246:556–61.
  • Bouchard V, Rouleau M, Poirier GG. PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 2003;31:446–54.
  • Meyer R, Meyer-Ficca M, Jacobsen E, Jacobsen M. Enzymes in poly(ADP-Ribose) metabolism. In: , Burkle A(ed.) Poly(ADP-Ribosyl)ation. New York: Springer-Landes Bioscience; 2006.
  • Grant RS, Kapoor V. Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J Neurochem 1998;70:1759–63.
  • Furukawa A, Tada-Oikawa S, Kawanishi S. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion. Cell Physiol Biochem 2007;20:45–54.
  • Ying W. NAD+ and NADH in brain functions, brain diseases and brain aging. Front Biosci 2007;12:1863–88.
  • Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H. DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J Biol Chem 1982;257:12872–77.
  • de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Nat Acad Sci USA 1997;94:7303–7.
  • Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 1994;263:687–9.
  • di Lisa F, Ziegler M. Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett 2001;492:4–8.
  • Wang H, Schimoji M, Yu SW, Dawson TM, Dawson VL. Apoptosis inducing factor and PARP mediated injury in the MPTP mouse model of Parkinson's disease. Ann NY Acad Sci 2003;991:132–9.
  • Love S, Barber R, Wilcock GK. Increased poly(ADP-ribosyl)ation of nuclear proteins in Azheimer's Disease. Brain 1999;122:247–53.
  • Beneke S, Diefenbach J, Burkle A. Poly(ADP-ribosyl)ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions. Int J Cancer 2004;111:813–8.
  • Burkle A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. Febs J 2005;272:4576–89.
  • Grube K, Burkle A. Poly(ADP-ribose) polymerase activity in mononuclear cell lines of 13 mammalian species correlates with species specific lifespan. Proc Nat Acad Sci USA 1992;89:11759–63.
  • Milne J, Denu JM. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Pharm Des 2008;12:11–7.
  • Anastasiou D, Krek W. SIRT1: linking adaptive cellular responses to aging-associated changes in organismal physiology. Physiology (Bethesda) 2006;21:404–10.
  • Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 trangenic mice show phenotypes resembling calorie restriction. Aging Cell 2007;6:759–67.
  • Bordone L, Motta MC, Picard F. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006;4:e31.
  • Michishita E, Park J, Burneskis J, Barrett J, Horikawa I. Evolutionary conserved and nonconserved cellular localisations and functions of human SIRT proteins. Mol Biol Chem 2005;16:4623–35.
  • Jing E, Gesta S, Kahn C. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 2007;6:105–14.
  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113–8.
  • Canto C, Gerhart-Hines Z, Feige J, Lagouge M, Noriega L, Milne J, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009;458:1056–60.
  • Fuclo M, Cen Y, Zhao P, Hoffman E, McBurney M, Sauve A, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008;14:661–73.
  • Fiege J, Auwerx J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 2008;20:303–9.
  • Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci 2005;26:94–103.
  • Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 2003;309:558–66.
  • Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 2007;26:945–57.
  • Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C, et al. Sirtuin2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J Neurosci 2007;27:2606–16.
  • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417–35.
  • Pearson K, Baur J, Lewis K, Peshkin L, Price N, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending lifespan. Cell Metab 2008;8:157–68.
  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. Embo J 2007;26:3169–79.
  • Sinclair D. Toward a unified theory of calorie restriction and longevity regulation. Mech Ageing Dev 2005;126:987–1002.
  • Sablina A, Budanov A, Iilinskaya J, Agapova L, Kravchenko E, Chumakov M. The antioxidant function of the p53 tumour suppressor. Nat Med 2005;11:1306–13.
  • Lin SJ, Guarente L. Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 2003;15:241–6.
  • Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 2005;280:13560–67.
  • Ahn B, Kim H, Song S, Lee I, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. PNAS 2008;105:14447–52.
  • Anderson RM, Bitterman KJ, Wood JG. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 2003;423:181–5.
  • Haigis M, Mostoslavsky R, Haigis K, Fahie K, Christodoulou D, Murphy A, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 2006;126:941–54.
  • Nakagawa T, Lomb D, Haigis M, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009;137:560–70.
  • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 2005;280:21313–20.
  • Mostoslavsky R, Chua K, Lombard D, Pang W, Fischer M, Gellon L, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006;124:315–29.
  • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sirt2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006;20:1075–80.
  • Grummt I, Pikaard C. Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 2003;4:641–9.
  • Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E. Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol 2008;59:201–12.
  • Zhang J. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays 2003;25:808–14.
  • de Lisa F, Ziegler M. Pathophysiological relevance of mitochondria in NAD+ metabolism. FEBS Lett 2001;492:4–8.
  • Douce R, Neuburger M. The uniqueness of plant mitochondria. Ann Rev Plant Physiol Plant Mol Biol 1989;40:371–414.
  • Mathew C, Van Holde K, Ahern K. Biochemistry. 3rd ed. Boston, MA: Addison-Wesley; 2000.
  • Sanni LA, Rae C, Maitland A, Stocker R, Hunt N. Is ischemia involved in the pathogenesis of cerebral malaria? Am J Pathol 2001;159:1105–12.
  • Gaikwad A, Long DI, Stringer J, Jaiswal A. In vivo role of NAD(P)H: quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J Biol Chem 2001;276:22559–64.
  • Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol 1998;275:H195–203.
  • Mongan P, Capacchione J, West S, Karaian J, Dubois D, Keneally R, et al. Pyruvate improves redox status and decreases indicators of hepatic apoptosis during hemorrhagic shock in swine. Am J Physiol Heart Circ Physiol 2002;384:143–53.
  • MacDonald M, Marshall L. Mouse lacking NAD+ linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle. Arch Biochem Biophys 2000;384:143–53.
  • Schweiger M, Hennig K, Lerner F, Niere M, Hirsch-Kauffmann M, Specht T, et al. Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis. FEBS Lett 2001;492:95–100.
  • Berger F, Lau C, Ziegler M. Regulation of poly(ADP-ribose) polymerase 1 activity by the phosphorylation state of the nuclear NAD biosynthetic enzyme NMN adenylyl transferase 1. Proc Natl Acad Sci USA 2007;104:3765–70.
  • Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri A. Enzymology of NAD+ homeostasis in man. Cell Mol Life Sci 1999;61:19–34.
  • Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun 2002;297:835–40.
  • Ziegler M. NAD: Metabolism and Regulatory Functions. In: , Burkle A(ed.) Poly(ADP-ribosyl)ation. Georgetown, TX: Landes Bioscience; 2006.
  • Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci 2007;32:12–9.
  • Bedalov A, Simon DA. NAD to the rescue. Sci Mag 2004;305:954–8.
  • Raff MC, Whitemore AV, Finn JT. Axonal self-destruction and neurodegeneration. Science 2002;296:868–71.
  • Arraki T, Sasaki A, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004;305:1010–3.
  • Lin M, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787–95.
  • Kauppinen TM, Suh SW, Genain C, Swanson RA. Poly(ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res 2005;81:190–8.
  • Cosi C, Colpaert F, Koek W, Degryse A, Marien M. Poly (ADP-ribose) polymerase inhibitors protect against MPTP-induced depletions of striatal dopamine and cortical noradrenaline in C57B1/6 mice. Brain Res 1996;729:264–9.
  • Stone TW, Behan WM, Jones PA, Darlington LG, Smith RA. The role of kynurenines in the production of neuronal death, and the neuroprotective effect of purines. J Alzheimers Dis 2001;3:355–66.
  • Stone TW. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 2001;64:185–218.
  • Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002;1:609–20.
  • Ying W, Sevigny MB, Chen Y, Swanson RA. Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death. Proc Natl Acad Sci USA 2001;98:12227–32.
  • Berger SJ, Sudar DC, Berger NA. Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1986;134:227–32.
  • Braidy N, Guillemin G, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism, oxidative stress and Sirt1 activity in Wistar Rats. PLOSONE 2011;6:e19194.
  • Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6:298–305.
  • Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. A novel VTNR enhancer within the SIRT3 gene, a human homologue of SIR2 is associated with survival at oldest ages. Genomics 2005;85:258–63.
  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006;127:1109–22.
  • van der Veer E, Ho A, O'Neil C, Barbosa N, Scott R, Cregan S, et al. Extension of human lifespan by nicotinamide phosphoribosyltransferase. Am Soc Biochem Mol Biol. 2007;282:10841–5.
  • von Kobbe C, Harrigan J, Schreiber V, Stiegler P, Piotrowski J, Dawut L, et al. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res 2004;32:4003–14.
  • Gille A, Bodor E, Ahmad K, Offermanns S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu Rev Pharmacol Toxicol 2008;48:79–106.
  • Penberthy WT, Tsunoda I. The importance of NAD in multiple sclerosis. Curr Pharm Des 2009;15:64–99.
  • Alano CC, Ying W, Swanson RA. Poly(ADP-ribose) polymerase-1 mediated cell death in astrocytes required NAD+ depletion and mitochondrial permeability transition. J Biol Chem 2004;279:18895–902.
  • Pillai JB, Isbatan A, Imai SI, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sirt2 deacetylase activity. J Biol Chem 2005;280:43121–30.
  • Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 2005;280:17187–95.
  • Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 2007;104:7217–22.
  • Braidy N, Grant R, Adams S, Guillemin G. Neuroprotective effects of naturally occurring polyphenols on quinolinic-acid induced excitotoxicity in human neurons. FEBS J 2010;277:368–82.
  • Denu JM. Vitamins and aging: pathways to NAD+ synthesis. Cell 2007;129:453–4.
  • Chikenji T, Asai T, Tatibana M. Protein-diet-induced elevation of 5-phosphoribosyl 1-disphosphate concentrations in mouse liver associated with increased syntheses of various nucleotides and the possible involvement of glucagon. Biochim Biophys Acta 1984;802:274–81.
  • Adlebiassette H, Bell J, Creange A, Sazdovitch V, Authier F, Gray F, et al. DNA breaks detected by in situ end-labelling in dorsal root ganglia of patients with AIDS. Neuropathol Appl Neurobiol 1998;24:373–80.
  • Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the ‘magnificent seven', function, metabolism and longevity. Ann Med 2007;39:335–45.
  • Young G, Choleris E, Lund F, Kirkland J. Decreased cADPR and increased NAD+ in the CD38−/− mouse. Biochem Biophys Res Commun 2006;346:188–92.
  • Aksoy P, White T, Thompson M, Chini E. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 2006;345:1386–92.
  • Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell 2005;7:25–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.