Publication Cover
Redox Report
Communications in Free Radical Research
Volume 4, 1999 - Issue 6
451
Views
26
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidants suitable for use with chemiluminescence to identify oxyradical species

&
Pages 277-290 | Published online: 19 Jul 2013

REFERENCES

  • Cheesemann KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49: 481–493.
  • Rice-Evans CA, Diplock AT, Symons MCR. (eds) Techniques in Free Radical Research. London: Elsevier, 1991.
  • Faulkner K, Fridovich I. Luminol and lucigenin as detectors for 02-. Free Radic Biol Med 1993; 15: 447–451.
  • Thorpe GHG, Kricka U. Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol 1986; 133: 331–353.
  • Sankuratri N, Kotake Y, Janzen EG. Studies on the stability of oxygen radical spin adducts of a new spin trap: 5-methyl-5-phenylpyrroline-1-oxide. Free Radic Biol Med 1996; 21: 889–894.
  • Kricka U. Chemiluminescent and bioluminescent techniques. Clin Chem 1991; 37: 1472–1481.
  • Halliwell B, Grootveld M, Kaur H, Fagerheim I. Aromatic hydroxylation and uric acid degradation as methods for detection and measuring oxygen radicals in vitro and in vivo. In: Rice-Evans C, Halliwell B. (eds) Free Radicals: Methodology and Concepts. London: Richelieu, 1988; 33–59.
  • Greenwald RA. (ed) Handbook of Methods for Oxygen Radical Research. Florida, USA: CRC Press, 1985; 213–214.
  • Wilhelm J, Vilim V. Variables in xanthine oxidase initiated luminol chemiluminescence: implications for chemiluminescence measurements in biological systems. Anal Biochem 1986; 158: 201–210.
  • Valintine JS, Miksztal AR, Sawyer DT. Methods for the study of superoxide chemistry in nonaqueous solutions. Methods Enzymol 1984; 105: 71–80.
  • Arnhold J, Mueller S, Arnholdt K, Grimm E. Chemiluminescence intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of hydrogen peroxide. J Biolumin Chemilumin 1991; 6: 189–192.
  • Aubry JM. Search for singlet oxygen in the decomposition of hydrogen peroxide by mineral compounds in aqueous solutions. J Am Chem Soc 1985; 107: 5844–5849.
  • Butto G. The effect of quenchers on the chemiluminescence of luminol and lucigenin. J Biolumin Chemilumin 1989; 3: 59–65.
  • Butto G. The effect of buffers and chelators on the reaction of luminol with Fenton's reagent near neutral pH. J Biolumin Chemilumin 1991; 6: 147–151.
  • Aruoma OI, Halliwell B, Gajenski E, Dizdaroglu M. Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem 1989; 264: 20509–20512.
  • Allen RC. Phagocytic leukocyte oxygenation activities and chemiluminescence: A kinetic approach to analysis. Methods Enzymol 1978; 133: 449–493.
  • Littarru GP, Lippa S, DeSole P, Oradei A, Torro FD, Macri M. Quenching of singlet oxygen by D-tocopherol in human granulo-cytes. Biochem Biophys Res Commun 1984; 199: 1056–1061.
  • Gyllenhammer H. Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J Immunol Methods 1987; 97: 209–213.
  • Koga S, Nakano M, Uehara K. Mechanism for the generation of superoxide anion and singlet oxygen during heme compound catalyzed linoleic acid hydroperoxide decomposition. Arch Biochem Biophys 1991; 289: 223–229.
  • Weitberg AB, Weitzman SA, Clark E, Stossel TP. Effect of anti-oxidants on oxidant-induced sister chromatid exchange formation. J Clin Invest 1985; 75: 1835–1841.
  • Melinn M, McLaughlin H. Hydroxyl radical scavengers inhibit human lectin-dependent cellular cytotoxicity. Immunology 1986; 58: 197–202.
  • Ischiropoulos H, Kumae T, Kikkawa Y. Effect of interferon inducers on superoxide anion generation from rat liver microsomes detected by lucigenin chemiluminescence. Biochem Biophys Res Commit 1989; 161: 1042–1048.
  • Matthews RW, Sangster DT. Measurement by benzoate radiolytic decarboxylation of relative rate constants for hydroxyl radical reactions. J Phys Chem 1965; 69: 1938–1946.
  • Babbs CF, Gale M. Methane sulfinic acid production from DMSO as an indicator of hydroxyl radical production in vivo. In: Rice-Evans C, Halliwell B. (eds) Free Radicals: Methodology and Concepts. London: Richelieu, 1988; 91–121.
  • Goldstein S, Czapski G. Mannitol as an OH scavenger in aqueous solutions and in biological systems. Int J Radiat Biol 1984; 46: 725–729.
  • Halliwell B. How to characterize a biological anti-oxidant. Free Radic Res Commun 1990; 9: 1–32.
  • Fox RB. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger dimethylthiourea. Lab Invest 1985; 53: 656–664.
  • Hoe S, Rowley DA, Halliwell B et al. Reactions of ferrioxamine and desferrioxamine with the hydroxyl radical. Chem Biol Interact 1982; 41: 75–81.
  • Reiter RJ, Melchiorri D, Sewerynek E et al. A review of the evidence supporting melatonin's role as an antioxidant. J Pineal Res 1995; 18: 1–11.
  • Lamrini R, Crouzet JM, Francina A, Guilluy R, Steghens JP, Brazier JL. Evaluation of hydroxyl radicals production using 13CO2-gas chromatography-isotope ratio mass spectrometry. Anal Biochem 1994; 220: 129–136.
  • Valeri F, Boess F, Wolf A, Goldlin C, Boelsterli UA. Fructose and tagatose protect against oxidative cell injury by iron chelation. Free Radic Biol Med 1997; 22: 257–268.
  • Krieg M. Determination of singlet oxygen quantum yields with 1,3-diphenylisobenzofuran in model membrane systems. J Biochem Biophys Methods 1993; 27: 143–149.
  • Kanofsky JR. Catalysis of singlet oxygen production in the reaction of hydrogen peroxide and hypochlorous acid by 1,4-diazobicyclo (2.2.2) octane (DABCO). Biochem Biophys Res Commun 1986; 134: 777–782.
  • Kasprzak KS, North SL, Hernandez L. Reversal by nickel (II) of inhibitory effects of some scavengers of active oxygen species upon hydroxylation of 2'-deoxyguanosine in vitro. Chem Biol Interact 1992; 84: 11–19.
  • Wozniak M, Tanfani F, Bertoli E, Zolese G, Antosiewicz J. A new fluorescence method to detect singlet oxygen inside phospholipid model membranes. Biochim Biophys Acta 1991; 1082: 94–100.
  • Ingold KU, Webb ASC, Witter D et al. Vitamin E remains the major lipid-soluble, chain-breaking anti-oxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys 1987; 259: 224–225.
  • Hasty N, Merkel PB, Radlick P, Kearns DR. Role of azide in singlet oxygen reactions: reaction of azide with singlet oxygen. Tetrahedron Lett 1972; 14: 49–52.
  • Aruoma OI, Halliwell B, Hoey BM, Butler J. The anti-oxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 1988; 256: 251–255.
  • Wright CE, Lin TT, Lin YY, Sturman JA, Gaull GE. Taurine scavenges oxidized chlorine in biological systems. Prog Clin Biol Res 1985; 179: 137–147.
  • Brestel EP. Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemilumi-nescence. Biochem Biophys Res Commun 1985; 126: 482–488.
  • Kafy AM, Lewis DA. Anti-oxidant effects of exogeneous polyamines in damage of lysosomes inflicted by xanthine oxidase or stimulated polymorphonuclear leucocytes. Agents Actions 1988; 24: 145–151.
  • Das D, Banerjee RIC. Effect of stress on the anti-oxidant enzymes and gastric ulceration. Mol Cell Biochem 1993; 125: 115–125.
  • Williams JG, Hallett MB. The reaction of 5-amino-salicylic acid with hypochlorite: Implications for its mode of action in inflammatory bowel disease. Biochem Phannacol 1989; 38: 149–154.
  • Rao PS, Luber JM, Milinowicz J, Lalezari P, Mueller HS. Specificity of oxygen radical scavengers and assessment of free radical scavenger efficiency using luminol enhanced chemiluminescence. Biochem Biophys Res Commun 1988; 150: 39–44.
  • Terado LS, Leff JA, Repine JE. Measurement of xanthine oxidase in biological tissue. Methods Enzymol 1990; 186: 651–656.
  • Gardner PR, Nguyen D-DH, White CW. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc Natl Acad Sci USA 1994; 91: 12248–12252.
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97–112.
  • Yim MB, Chock PB, Stadtman ER. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc Natl Acad Sci USA 1990; 87: 5006–5010.
  • Yim MB, Chock PB, Stadtman ER. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Biol Chem 1993; 268: 4099–4105.
  • Liochev SI, Fridovich I. Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch Biochem Biophys 1997; 337: 115–120.
  • Gillbe CE, Sage FJ, Gutteridge JMC. Mannitol: molecule magnifique or a case of radical misinterpretation. Free Radic Res 1996; 24: 1–7.
  • Qian SY, Buettner GR. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study. Free Radic Biol Med 1999; 26: 1447–1456.
  • Rice-Evans CA, Diplock AT, Symons MCR. Techniques in free radical research. In: Burdon RH, Knippenberg PH. (eds) Laboratory Techniques in Biochemistry and Molecular Biology. London: Elsevier, 1991; 22: 25.
  • Slater TE Free radical mechanisms in tissue injury. Biochem J 1984; 222: 1–15.
  • Fridovich I. Superoxide anion radical (02-), superoxide dismutases, and related matters. J Biol Chem 1997; 272: 18515–18517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.