1,230
Views
41
CrossRef citations to date
0
Altmetric
Special Issue Articles

Welding metallurgy of stainless steels during resistance spot welding Part I: fusion zone

, &
Pages 502-511 | Received 15 Dec 2014, Accepted 04 Feb 2015, Published online: 12 Mar 2015

References

  • Kim N. J.: ‘Critical assessment 6: magnesium sheet alloys: viable alternatives to steels?’, Mater. Sci. Technol., 2014, 30, 1925–1928.
  • Cooman B. C. D.: ‘Structure–properties relationship in TRIP steels containing carbide-free bainite’, Curr. Opin. Solid State Mater. Sci., 2004, 8, 285–303.
  • Zuidema B. K.: ‘Bridging the design–manufacturing–materials data gap: material properties for optimum design and manufacturing performance in light vehicle steel-intensive body structures’, JOM, 2012, 64, 1039–1047.
  • Schuberth S., Schedin E., Frohlich T. and Ratte E.: ‘Next generation vehicle – engineering guidelines for stainless steel in automotive application’. Proc. 6th Stainless Steel Science and Market Conf., Helsinki, Finland, June 2008, Jernkontoret, The Swedish Steel Producers’ Association, Paper G02-1637 644.
  • Snelgrove P.: ‘Stainless steel automotive and transport developments’. International Stainless Steel Forum, www.worldstainless.org.
  • Codd D. S.: ‘Automotive mass reduction with martensitic stainless steel’; 2011, Warrendale, PA, SAE International.
  • Pouranvari M. and Marashi S. P. H.: ‘Critical review of automotive steels spot welding: process, structure and properties’, Sci. Technol. Weld. Join., 2013, 18, 361–403.
  • Yang Y. P., Gould J., Peterson W., Orth F., Zelenak P. and Al-Fakir W.: ‘Development of spot weld failure parameters for full vehicle crash modeling’, Sci. Technol. Weld. Join., 2013, 18, 222–231.
  • Sun X., Stephens E. V. and Khaleel M. A.: ‘Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high-strength steel spot welds’, Weld. J., 2007, 86, 18s–25s.
  • Pouranvari M. and Marashi S. P. H.: ‘Key factors influencing mechanical performance of dual phase steel resistance spot welds’, Sci. Technol. Weld. Join., 2010, 15, 149–155.
  • Pouranvari M. and Marashi S. P. H.: ‘Factors affecting mechanical properties of resistance spot welds’, Mater. Sci. Technol., 2010, 26, 1137–1144.
  • Sawanishi C., Ogura T., Taniguchi K., Ikeda R., Oi K., Yasuda K. and Hirose A.: ‘Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern’, Sci. Technol. Weld. Join., 2014, 19, 52–59.
  • Wei S. T., Lv D., Liu R. D., Lin L., Xu R. J., Guo J. Y. and Wang K. Q.: ‘Similar and dissimilar resistance spot welding of advanced high strength steels: welding and heat treatment procedures, structure and mechanical properties’, Sci. Technol. Weld. Join., 2014, 19, 427–435.
  • Saha D. C., Cho Y. and Park Y.-D.: ‘Metallographic and fracture characteristics of resistance spot welded TWIP steels’, Sci. Technol. Weld. Join., 2013, 18, 711–720.
  • Rajinikanth V., Mukherjee K., Chowdhury S. G., Schiebahn A., Harms A. and Bleck W.: ‘Mechanical property and microstructure of resistance spot welded twinning induced plasticity-dual phase steels joint’, Sci. Technol. Weld. Join., 2013, 18, 485–491.
  • American Welding Society: ‘Metals and their weldability’, in ‘ Welding handbook’, (ed. W. H. Kearns) 7th edn, Vol. 4; 1982, Miami, FL, AWS..
  • Lippold J. C. and Kotecki D. J.: ‘Welding metallurgy and weldability of stainless steels’; 2005, Hoboken, NJ, John Wiley & Sons Hoboken.
  • Kou S.: ‘Welding metallurgy’, 2nd edn; 2003, Hoboken, NJ, John Wiley & Sons, Inc..
  • Karlsson L. and Börjesson J.: ‘Orientation relationships of intragranular austenite in duplex stainless steel weld metals’, Sci. Technol. Weld. Join., 2014, 19, 318–323.
  • Tate S. B. and Liu S.: ‘Solidification behaviour of laser welded type 21Cr–6Ni–9Mn stainless steel’, Sci. Technol. Weld. Join., 2014, 19, 310–317.
  • Gould J. E., Khurana S. P. and Li T.: ‘Predictions of microstructures when welding automotive advanced high-strength steels’, Weld. J., 2006, 85, 111s–116s.
  • Pouranvari M. and Marashi S. P. H.: ‘Failure mode transition in AISI 304 resistance spot welds’, Weld. J., 2012, 91, 303s–309s.
  • Pouranvari M. and Marashi S. P. H.: ‘Similar and dissimilar RSW of low carbon and austenitic stainless steels: effect of weld microstructure and hardness profile on failure mode’, Mater. Sci. Technol., 2009, 25, 1411–1416.
  • Alenius M., Pohjanne P., Somervuori M. and Hanninen H.: ‘Exploring the mechanical properties of spot welded dissimilar joints for stainless and galvanized steels’, Weld. J., 2006, 85, 305s–313s.
  • Alizadeh-Sh M., Marashi S. P. H. and Pouranvari M.: ‘Resistance spot welding of AISI 430 ferritic stainless steel: phase transformations and mechanical properties’, Mater. Des., 2014, 56, 258–263.
  • Jaber H. L., Pouranvari M., Marashi S. P. H., Alizadeh-Sh M., Salim R. K. and Hashim F. A.: ‘Dissimilar spot welding of dual phase steel/ferritic stainless steel: phase transformations’, Sci. Technol. Weld. Join., 2014, 19, 565–571.
  • Alizadeh-Sh M., Marashi S. P. H. and Pouranvari M.: ‘Microstructure–properties relationships in martensitic stainless steel resistance spot welds’, Sci. Technol. Weld. Join., 2014, 19, 595–602.
  • Kotecki D. J. and Siewert T. A.: ‘WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 diagram’, Weld. J., 1992, 71, 171s–178s.
  • Babu S. S., Vitek J. M., Iskander Y. S. and David S. A.: ‘New model for prediction of ferrite number of stainless steel welds Sci’, Technol. Weld. Join., 1997, 2, 279–285.
  • http://calculations.ewi.org/vjp/secure/fnplots.asp (accessed 14 December 2014)..
  • Vitek J. M., David S. A. and Hihman C. R.: ‘Improved ferrite number predication model that accounts for cooling rate effects. 1: model development’, Weld. J., 2003, 82, 10s–17s.
  • Vitek J. M., David S. A. and Hihman C. R.: ‘Improved ferrite number predication model that accounts for cooling rate effects. 2: model results’, Weld. J., 2003, 82, 43s–50s.
  • http://calculations.ewi.org/vjp/secure/fncoolingrate.asp (accessed 14 December 2014).
  • Farrar R. A.: ‘Microstructure and phase transformations in duplex 316 sub-merged arc weld metal-an aging study at 700°C’, J. Mater. Sci., 1985, 20, 4215–4231.
  • Balmforth M. C. and Lippold J. C.: ‘A new ferritic–martensitic stainless steel constitution diagram’, Weld. J., 2000, 79, 339s–345s.
  • Palmer T. A., Elmer J. W. and Babu S. S.: ‘Observations of ferrite/austenite transformations in the heat affected zone of 2205 duplex stainless steel spot welds using time resolved X-ray diffraction’, Mater. Sci. Eng. A, 2004, A374, 307–321.
  • Ramirez A. J., Brandi S. D. and Lippold J. C.: ‘Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels’, Sci. Technol. Weld. Join., 2004, 9, (4), 301–313.
  • Badillo A. and Beckermann C.: ‘Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification’, Acta Mater., 2006, 54, 2015–2026.
  • Schempp P., Cross C. E., Pittner A. and Rethmeier M.: ‘Solidification of GTA aluminum weld metal. Part II – thermal conditions and model for columnar to equiaxed transition’, Weld. J., 2014, 93, 69–77.
  • Xiao L., Liu L., Zhou Y. and Esmaeili S.: ‘Resistance-spot-welded AZ31 magnesium alloys. Part I: dependence of fusion zone microstructures on second-phase particles’, Metall. Mater. Trans. A, 2010, 41A, 1511–1522.
  • Gould J. E.: ‘Modeling primary dendrite arm spacings in resistance spot welds. Part I – modeling studies’, Weld. J., 1994, 73, 67s–74s.
  • Gould J. E.: ‘Modeling primary dendrite arm spacings in resistance spot welds. Part II – experimental studies’, Weld. J., 1994, 73, 91s–100s.
  • Kato M., Matsuda F. and Senda T.: ‘Solidification mode in aluminum weld metal Trans’, Jpn Weld. Soc., 1972, 3, 69–76.
  • Poole W. J. and Weinberg F.: ‘Observation of the columnar-to-equiaxed transition in stainless steels Metall’, Mater. Trans. A, 1998, 29A, 855–861.
  • Bramfitt B. L.: ‘The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron’, Metall. Trans., 1970, 1, 1987–1995.
  • Baltazar Hernandez V. H.: Effects of martensite tempering on HAZ-softening and tensile properties of resistance spot welded dual-phase steels PhD thesis, University of Waterloo, Waterloo, Ont., Canada, 2010.
  • Burgmann P., Clymer K., Cobb S., Miller M., O'Loughlin A., Findley K. O. and Liu S.: ‘Weldability, processing, microstructure and mechanical behavior relationships in advanced high-strength steel’, Iron Steel Technol., 2010, 7, 76–85.
  • Jung G. S., Lee K. Y., Lee J. B., Bhadeshia H. K. D. H. and Suh D. W.: ‘Spot weldability of TRIP assisted steels with high carbon and aluminium contents’, Sci. Technol. Weld. Join., 2012, 17, 92–98.
  • Uijl N. J. D. and Smith S.: ‘Resistance spot welding of advanced high strength steels for the automotive industry’, (eds. Zhang W. and Eder) A., Proc. 4th Int. Seminar on ‘Advances in resistance welding’, Wels, Austria, November 2006, SWANTEC Software and Engineering ApS and FRONIUS International GmbH, 30–60.
  • Oikawa H., Murayama G., Sakiyama T., Takahashi Y. and Ishikawa T.: ‘Resistance spot weldability of high strength steel (hss) sheets for automobiles’, Nippon Steel Tech. Rep., 2007, 39, 39–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.