74
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

Frontal cellular automata simulations of microstructure evolution during shape rolling

&
Pages S6-295-S6-302 | Published online: 05 Dec 2014

References

  • D. S. Svyetlichnyy and Ł. Łach: ‘Digital material representation of given parameters’, Steel Res. Int., 2012, Spec. Ed., 1151–1154.
  • Ł. Madej, Ł. Rauch, K. Perzyński and P. Cybułka: ‘Digital material representation as an efficient tool for strain inhomogeneities analysis at the micro scale level’, Arch. Civil Mech. Eng., 2011, 11, 661–679.
  • C. Devadas, I. V. Samarasekera and E. B. Hawbolt: ‘The thermal and metallurgical state of steel strip during hot rolling: Part III. Microstructural evolution’, Metall. Trans. A, 1991, 22, 335–349.
  • N. Moelans, B. Blanpain and P. Wollants: ‘An introduction to phase – field modeling of microstructure evolution’, Calphad, 2008, 32, 268–294.
  • I. Steinbach: ‘Phase – field models in materials science’, Model. Simul. Mater. Sci. Eng., 2009, 17, 1–31.
  • M. Bernacki, R. E. Logé and T. Coupez: ‘Level set framework for the finite – element modelling of recrystallization and grain growth in polycrystalline materials’, Scr. Mater., 2011, 64, 525–528.
  • D. Weygand, Y. Bréchet and J. Lépinoux: ‘Zener pinning and grain growth: a two – dimensional vertex computer simulation’, Acta Mater., 1999, 47, 961–970.
  • K. Nakashima, T. Nagai and K. Kawasaki: ‘Scaling behavior of two – dimensional domain growth: Computer simulation of vertex models’, J. Stat. Phys., 1989, 57, 759–787.
  • P. Mathé and E. Novak: ‘Simple Monte Carlo and the Metropolis algorithm’, J. Complexity, 2007, 23, 673–696.
  • C. Ming Huang, C. L. Joanne, B. S. V. Patnaik and R. Jayaganthan: ‘Monte Carlo simulation of grain growth in polycrystalline materials’, Appl. Surf. Sci., 2006, 252, 3997–4002.
  • T. Belytschko, R. Gracie and G. Ventura: ‘A review of extended/generalized finite element methods for material modeling’, Mater. Sci. Eng., 2009, 17, 1–31.
  • D. Raabe: ‘Cellular automata in materials science with particular reference to recrystallization simulation’, Annu. Rev. Mater. Res., 2002, 32, 53–76.
  • D. Svyetlichnyy, J. Majta, K. Muszka and Ł. Łach: ‘Modeling of microstructure evolution of BCC metals subjected to severe plastic deformation’, AIP Conf. Proc., 2010, 1315, 1473–1478.
  • D. S. Svyetlichnyy: ‘Modeling of grain refinement by cellular automata’, Comp. Mater. Sci., 2013, 77, 408–416.
  • Ł. Łach and D. Svyetlichnyy: ‘Evolution of microstructure during the shape rolling modeled by cellular automata’, Key Eng. Mater., 2012, 504–506, 187.
  • D. S. Svyetlichnyy: ‘Modelling of the microstructure: from classical cellular automata approach to the frontal one’, Comp. Mater. Sci., 2010, 50, 92–97.
  • Ł. Madej, J. Talamantes-Silva, I. C. Howard and M. Pietrzyk: ‘Modeling of the initiation and propagation of the shear band using the coupled CAFE model’, Arch. Metall. Mater., 2005, 50, 563–573.
  • S. Das, E. J. Palmiere and I. C. Howard, in: ‘CAFE: a tool for modeling thermomechanical processes’, in ‘Proc. ‘Thermomechanical processing: mechanics, microstructure & control’, (eds. E. J. Palmiere, M. Mahfouf and C. Pinna), 296–301; 2002, Sheffield, Dept. of Engineering Materials, University of Sheffield.
  • Z. Malinowski and J. G. Lenard: ‘Experimental substantiation of an elastoplastic finite element scheme for flat rolling’, Comp. Methods Appl. Mech. Eng., 1993, 104, 1–17.
  • Ł. Łach and D. Svyetlichnyy: ‘Multiscale model of shape rolling taking into account the microstructure evolution – schedule design by finite element method’, Adv. Mater. Res., 2014, 871, 263–268.
  • D. S. Svyetlichnyy, J. Nowak and Ł. Łach: ‘Modeling of recrystallization with recovery by frontal cellular automata’, Lect. Notes Comp. Sci., 2012, 47, 494–503.
  • D. Svyetlichnyy: ‘Simulation of microstructure evolution during shape rolling with the use of cellular automata’, ISIJ Int., 2012, 52, 559–568.
  • D. Svyetlichnyy: ‘Reorganization of cellular space during the modeling of the microstructure evolution by frontal cellular automata’, Comp. Mater. Sci., 2012, 60, 153–162.
  • G. I. Taylor: ‘The mechanism of plastic deformation of crystals. Part I. Theoretical’, Proc. R. Soc. A, 1934, 145, 362–387.
  • J. Nowak, D. Svyetlichny and Ł. Łach: ‘Modification of flow stress model based on internal variables’, Appl. Mech. Mater., 2011, 117–119, 582–587.
  • J. Nowak, D. Svyetlichnyy and Ł. Łach: ‘Development of flow stress model based on internal variables’, Lect. Notes Electr. Eng., 2011, 141, 291–296.
  • D. S. Svyetlichnyy: ‘Modification of coupled model of microstructure evolution and flow stress: experimental validation’, Mater. Sci. Techol., 2009, 25, 981–988.
  • D. S. Svyetlichnyy, J. Nowak, A. I. Mikhalyov, V. Pidvysotskyy and Ł. Łach: ‘Numerical simulation of flow stress by internal variables model’, Steel Res. Int., 2012, Spec. Ed., 1155–1158.
  • D. S. Svyetlichnyy, J. Majta and J. Nowak: ‘A flow stress for the deformation under varying condition—internal and state variable models’, Mater. Sci. Eng. A, 2013, 576, 140–148.
  • H. Shercliff, A. Lovatt, D. J. Jensen and J. Beynon: ‘Modelling of microstructure evolution in hot deformation’, Phil. Trans. R. Soc., 1999, 357, 1621–1643.
  • M. Ferry and F. J. Humphreys: ‘Discontinuous subgrain growth in deformed and annealed {110}〈001〉 aluminium single crystals’, Acta Mater., 1996, 44, 1293–1308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.