133
Views
2
CrossRef citations to date
0
Altmetric
Research Papers

Effect of sintering holding time on low-temperature degradation of yttria stabilised zirconia ceramics

, , , , , , & show all
Pages S6-408-S6-411 | Published online: 05 Dec 2014

References

  • D. D. L. Porter and A. H. Heuer: ‘Microstructural development in MgO partially stabilized zirconia (Mg-PSZ)’, J. Am. Ceram. Soc., 1979, 62, (5–6), 298–305.
  • R. Garvie, R. Hannink and R. Pascoe: ‘Creamic steel?’, Nature, 1975, 258, 703–704.
  • T. Coyle, W. Coblenz and B. Bender: ‘Toughness, strength, and microstructures of sintered CeO2 doped ZrO2 alloys’, Am. Ceram. Soc. Bull., 1983, 62, (12), 966–967.
  • S. Lawson: ‘Environmental degradation of zirconia ceramics’, J. Eur. Ceram. Soc., 1995, 15, (6), 485–502.
  • X. Guo: ‘Property degradation of tetragonal zirconia induced by low temperature defect reaction with water molecules’, Chem. Mater., 2004, 16, (21), 3988–3994.
  • K. Kobayashi, H. Kuwajima and T. Masaki: ‘Phase change and mechanical properties of ZrO2–Y2O3 solid electrolyte after ageing’, Solid State Ion., 1981, 3–4, 489–493.
  • T. Sato and M. Shimada: ‘Crystalline phase change in yttria partially stabilized zirconia by low temperature annealing’, J. Am. Ceram. Soc., 1984, 67, (10), 212–213.
  • X. Guo: ‘Low temperature degradation mechanism of tetragonal zirconia ceramics in water: role of oxygen vacancies’, Solid State Ion., 1998, 112, (1–2), 113–116.
  • X. Guo: ‘On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor’, J. Phys. Chem. Solids, 1999, 60, (4), 539–546.
  • I. L. Denry and J. A. Holloway: ‘Microstructural and crystallographic surface changes after grinding zirconia based dental ceramics’, J. Biomed. Mater. Res. B Appl. Biomater., 2006, 76B, (2), 440–448.
  • T. F. Alghazzawi, J. Lemons, P. R. Liu, M. E. Essig, A. A. Bartolucci and G. M. Janowski: ‘Influence of low temperature environmental exposure on the mechanical properties and structural stability of dental zirconia’, J. Prosthodont., 2012, 21, (5), 363–369.
  • J. F. Bartolomé, I. Montero, M. Díaz, S. López-Esteban, J. S. Moya, S. Deville, L. Gremillard, J. Chevalier and G. Fantozzi: ‘Accelerated aging in 3 mol-%yttria stabilized tetragonal zirconia ceramics sintered in reducing conditions’, J. Am. Ceram. Soc., 2005, 87, (12), 2282–2285.
  • S. Ramesh, M. Amiriyan, S. Meenaloshini, R. Tolouei, M. Hamdi, J. Pruboloksono and W. D. Teng: ‘Densification behaviour and properties of manganese oxide doped Y-TZP ceramics’, Ceram. Int., 2011, 37, (8), 3583–3590.
  • S. Ramesh, S. Meenaloshini, C. Y. Tan, W. J. K. Chew and W. D. Teng: ‘Effect of manganese oxide on the sintered properties and low temperature degradation of Y-TZP ceramics’, Ceram. Int., 2008, 34, (7), 1603–1608.
  • S. Ramesh and G. Muralithran: ‘Phase stability and microstructural development of Y-TZP doped hydroxyapatite’, Biomed. Eng. Appl. Basis Commun., 2001, 13, (2), 66–71.
  • G. Theunissen, J. Bouma, A. Winnubst and A. Burggraaf: ‘Mechanical properties of ultra-fine grained zirconia ceramics’, J. Mater. Sci., 1992, 27, (16), 4429–4438.
  • S. Deville, J. Chevalier and L. Gremillard: ‘Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia’, Biomaterials, 2006, 27, (10), 2186–2192.
  • M. Swain: ‘Grain size dependence of toughness and transformability of 2 mol-% Y-TZP ceramics’, J. Mater. Sci. Lett., 1986, 5, (11), 1159–1162.
  • P. F. Becher and M. V. Swain: ‘Grain size dependent transformation behavior in polycrystalline tetragonal zirconia’, J. Am. Ceram. Soc., 1992, 75, (3), 493–502.
  • G. Baldinozzi, D. Simeone, D. Gosset and M. Dutheil: ‘Neutron diffraction study of the size induced tetragonal to monoclinic phase transition in zirconia nanocrystals’, Phys. Rev. Lett., 2003, 90, (21), 216103-1–216103-4.
  • G. Skandan, H. Hahn, M. Roddy and W. R. Cannon: ‘Ultrafine grained dense monoclinic and tetragonal zirconia’, J. Am. Ceram. Soc., 1994, 77, (7), 1706–1710.
  • E. Tani, M. Yoshimura and S. Somiya: ‘Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions’, J. Am. Ceram. Soc., 1983, 66, (1), 11–14.
  • F. Bondioli, A. M. Ferrari, C. Leonelli, C. Siligardi and G. C. Pellacani: ‘Microwave-hydrothermal synthesis of nanocrystalline zirconia powders’, J. Am. Ceram. Soc., 2001, 84, (11), 2728–2730.
  • M. Z. C. Hu, R. D. Hunt, E. A. Payzant and C. R. Hubbard: ‘Nanocrystallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipitation methods’, J. Am. Ceram. Soc., 1999, 82, (9), 2313–2320.
  • I. W. Chen and X. H. Wang: ‘Sintering dense nanocrystalline ceramics without final-stage grain growth’, Nature, 2000, 404, 168–171.
  • H. Toraya, M. Yoshimura and S. Somiya: ‘Quantitative analysis of monoclinic-stabilized Cubic ZrO2 systems by X-ray diffraction’, J. Am. Ceram. Soc., 1984, 67, (9), 183–184.
  • M. I. Mendelson: ‘Average grain size in polycrystalline ceramics’, J. Am. Ceram. Soc., 1969, 52, (8), 443–446.
  • C. L. Robert, F. Ansart, C. Deloget, M. Gaudon and A. Rousset: ‘Dense yttria stabilized zirconia: sintering and microstructure’, Ceram. Int., 2003, 29, (2), 151–158.
  • A. Paul: ‘Processing and properties of nanostructured zirconia ceramics’, PhD thesis, Loughborough University, UK, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.