1,286
Views
28
CrossRef citations to date
0
Altmetric
HEMATOLOGICAL MALIGNANCY

Bone marrow neoplastic niche in leukemia

, , , &

References

  • Borovski T, De Sousa EMF, Vermeulen L, Medema JP. Cancer stem cell niche: the place to be. Cancer Res. [Research Support, Non-U.S. Gov't Review] 2011;71(3):634–9.
  • Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell 2011;13(3):131–6.
  • Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review] 2011;29(5):591–9.
  • Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2008;322(5909):1861–5.
  • Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. [Research Support, Non-U.S. Gov't Review] 2011;208(3):421–8.
  • Shen Y, Nilsson SK. Bone, microenvironment and hematopoiesis. Curr Opin Hematol. [Review] 2012;19(4):250–5.
  • Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. [Comparative Study Review] 2006;66(9):4553–7.
  • Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 2004;303(5664):1684–6.
  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet. [Research Support, Non-U.S. Gov't] 2004;36(10):1117–21.
  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 2004;351(7):657–67.
  • Paydas S, Tanriverdi K, Yavuz S, Disel U, Sahin B, Burgut R. Survivin and aven: two distinct antiapoptotic signals in acute leukemias. Ann Oncol. [Comparative Study] 2003;14(7):1045–50.
  • Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A. The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv Hematol. 2012; doi: 10.1155/2012/524308.
  • Irmisch A, Huelsken J. Metastasis: New insights into organ-specific extravasation and metastatic niches. Exp Cell Res. 2013;319(11):1604–10.
  • Descot A, Oskarsson T. The molecular composition of the metastatic niche. Exp Cell Res. 2013;319(11):1679–86.
  • Nwajei F, Konopleva M. The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol. 2013; doi: 10.1155/2013/953982.
  • Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. [Research Support, N.I.H., Extramural] 2006;12(10):1175–80.
  • Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. [Research Support, Non-U.S. Gov't] 2006;12(10):1167–74.
  • Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. [Review] 2008;14(9):2519–26.
  • Raaijmakers MH. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia. [Review] 2007;21(10):2094–102.
  • de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E. ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol. [Research Support, Non-U.S. Gov't Review] 2007;62(3):214–26.
  • Colombo M, Mirandola L, Platonova N, Apicella L, Basile A, Figueroa AJ, et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia 2013;27(5):1009–18.
  • Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. [Review] 2005;15(9):494–501.
  • Hu Y, Fu L. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res. 2012;2(3):340–56.
  • Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol Med. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review] 2007;13(2):72–81.
  • Govindan R, Kumar V, Sisodia S, Mallick PJ. Molecular interactions in stem cell homing and bone marrow transplantation therapy. Int J Pharm. 2012;3(4):210–3.
  • Bonig H, Priestley GV, Papayannopoulou T. Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2006;107(1):79–86.
  • Papayannopoulou T, Priestley GV, Nakamoto B, Zafiropoulos V, Scott LM. Molecular pathways in bone marrow homing: dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood. 2001;98(8):2403–11.
  • Guzman ML, Jordan CT. Considerations for targeting malignant stem cells in leukemia. Cancer Control. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review] 2004;11(2):97–104.
  • Deng CH, Zhang QP. Leukemia stem cells in drug resistance and metastasis. Chin Med J (Engl). [Research Support, Non-U.S. Gov't Review] 2010;123(7):954–60.
  • O'Hare T, Corbin AS, Druker BJ. Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review] 2006;16(1):92–9.
  • O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. [Research Support, Non-U.S. Gov't] 2009;16(5):401–12.
  • Swerts K, De Moerloose B, Dhooge C, Laureys G, Benoit Y, Philippe J. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer. [Research Support, Non-U.S. Gov't Review] 2006;42(3):295–309.
  • Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell. [Research Support, N.I.H., Extramural] 2008;2(3):274–83.
  • Kim Y, Thanendrarajan S, Schmidt-Wolf IG. Wnt/ss-catenin: a new therapeutic approach to acute myeloid leukemia. Leuk Res Treatment. 2011; doi: 10.4061/2011/428960.
  • Rizo A, Vellenga E, de Haan G, Schuringa JJ. Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet. [Research Support, Non-U.S. Gov't Review] 2006;15(2):R210–9.
  • Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review] 2010;46(2):281–5.
  • Schepers K, Hsiao EC, Garg T, Scott MJ, Passegue E. Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2012;120(17):3425–35.
  • Abroun S, Saki N, Fakher R, Asghari F. Biology and bioinformatics of myeloma cell. Lab Hematol. 2012;18(4):30–41.
  • Noll JE, Williams SA, Purton LE, Zannettino AC. Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche? Blood Cancer J. 2012;2:e91.
  • Roman-Gomez J, Cordeu L, Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood [Clinical Trial Comparative Study Multicenter Study Research Support, Non-U.S. Gov't Retracted Publication] 2007;109(8):3462–9.
  • Thanendrarajan S, Kim Y, Schmidt-Wolf IG. Understanding and Targeting the Wnt/beta-Catenin Signaling Pathway in Chronic Leukemia. Leuk Res Treatment. 2011; doi: 10.4061/2011/329572.
  • Rosenbauer F, Koschmieder S, Steidl U, Tenen DG. Effect of transcription-factor concentrations on leukemic stem cells. Blood. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review] 2005;106(5):1519–24.
  • Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res. [Research Support, Non-U.S. Gov't] 2011;30:110.
  • Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci USA. [Research Support, Non-U.S. Gov't] 2004;101(36):13312–7.
  • Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, et al. BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 2002;30(1):48–58.
  • Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR, et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood. [Research Support, Non-U.S. Gov't] 2005;106(4):1369–75.
  • Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 2000;96(8):2641–8.
  • Ohnishi K. PML-RARalpha inhibitors (ATRA, tamibaroten, arsenic troxide) for acute promyelocytic leukemia. Int J Clin Oncol. [Review] 2007;12(5):313–7.
  • Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review] 2002;21(21):3422–44.
  • Li X, Xu YB, Wang Q, Lu Y, Zheng Y, Wang YC, et al. Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: the role in AML 1-ETO-induced growth arrest in leukemic cells. J Cell Physiol. [Research Support, Non-U.S. Gov't] 2006;208(3):594–601.
  • Liu S, Klisovic RB, Vukosavljevic T, Yu J, Paschka P, Huynh L, et al. Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J Pharmacol Exp Ther. [Research Support, N.I.H., Extramural] 2007;321(3):953–60.
  • Mitani K. Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene. [Review] 2004;23(24):4263–9.
  • Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, et al. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res. [Research Support, Non-U.S. Gov't] 2006;12(10):3043–9.
  • Shih Ie M, Wang TL. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review] 2007;67(5):1879–82.
  • Staal FJ, Langerak AW. Signaling pathways involved in the development of T-cell acute lymphoblastic leukemia. Haematologica [Comment Research Support, Non-U.S. Gov't] 2008;93(4):493–7.
  • Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM, et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2011;118(10):2849–56.
  • Schrottner P, Leick M, Burger M. The role of chemokines in B cell chronic lymphocytic leukaemia: pathophysiological aspects and clinical impact. Ann Hematol. [Research Support, Non-U.S. Gov't Review] 2010;89(5):437–46.
  • Abroun S. Chemokines in homeostasis and cancers. Cell 2007;10.
  • Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood [Research Support, Non-U.S. Gov't Review] 2006;107(5):1761–7.
  • Fukuda S, Onishi C, Pelus LM. Trafficking of acute leukemia cells–chemokine receptor pathways that modulate leukemia cell dissemination. 2011.
  • Kittang AO, Hatfield K, Sand K, Reikvam H, Bruserud O. The chemokine network in acute myelogenous leukemia: molecular mechanisms involved in leukemogenesis and therapeutic implications. Curr Top Microbiol Immunol. [Review] 2010;341:149–72.
  • Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta. [Review] 2007;1768(4):952–63.
  • Katoh M. Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int J Oncol. 2010;36(2):415–20.
  • Babashah S, Soleimani M. The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer. [Review] 2011;47(8):1127–37.
  • Garg M. MicroRNAs, stem cells and cancer stem cells. World J Stem Cells. 2012;4(7):62–70.
  • Valastyan S, Weinberg RA. Roles for microRNAs in the regulation of cell adhesion molecules. J Cell Sci. 2011;124(7):999–1006.
  • Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M. Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr). [Research Support, Non-U.S. Gov't] 2012;35(5):317–34.
  • Sionov RV. MicroRNAs and Glucocorticoid-Induced Apoptosis in Lymphoid Malignancies. ISRN Hematol. 2013; doi: 10.1155/2013/348212.
  • Hatzimichael E, Georgiou G, Benetatos L, Briasoulis E. Gene mutations and molecularly targeted therapies in acute myeloid leukemia. Am J Blood Res. 2013;3(1):29–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.