2,743
Views
20
CrossRef citations to date
0
Altmetric
CELL BIOLOGY

The role of notch signaling in bone marrow niche

, , , , , , , , & show all

References

  • Saki N, Abroun S, Farshdousti Hagh M, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131–6.
  • Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2011;17(17):5553–8.
  • Bolos V, Grego-Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev. [Research Support, Non-U.S. Gov't Review]. 2007;28(3):339–63.
  • Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. 2010;46(2):281–5.
  • Hu YY, Zheng MH, Zhang R, Liang YM, Han H. Notch signaling pathway and cancer metastasis. Adv Exp Med Biol. [Research Support, Non-U.S. Gov't Review]. 2012;727:186–98.
  • Maillard I, Koch U, Dumortier A, Shestova O, Xu L, Sai H, et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2008;2(4):356–66.
  • Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2012;21(13):2991–3000.
  • Wang Z, Li Y, Banerjee S, Sarkar FH. Exploitation of the Notch signaling pathway as a novel target for cancer therapy. Anticancer Res. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review]. 2008;28(6A):3621–30.
  • Perdigoto CN, Bardin AJ. Sending the right signal: Notch and stem cells. Biochim Biophys Acta [Research Support, Non-U.S. Gov't Review]. 2013;1830(2):2307–22.
  • Yeung TM, Chia LA, Kosinski CM, Kuo CJ. Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell Mol Life Sci. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. 2011;68(15):2513–23.
  • Canalis E. Notch signaling in osteoblasts. Sci Signal. [Review]. 2008;1(17):e17.
  • Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA [Research Support, N.I.H., Extramural]. 2008;105(37):13906–11.
  • Regan J, Long F. Notch signaling and bone remodeling. Curr Osteoporos Rep. [Research Support, N.I.H., Extramural]. 2013;11(2):126–9.
  • Canalis E, Parker K, Feng JQ, Zanotti S. Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology [Research Support, N.I.H., Extramural]. 2013;154(2):623–34.
  • Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. [Research Support, N.I.H., Extramural]. 2008;283(10):6509–18.
  • Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, et al. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood [Research Support, Non-U.S. Gov't]. 2003;101(6):2227–34.
  • Bigas A, Espinosa L. Hematopoietic stem cells: to be or Notch to be. Blood [Research Support, Non-U.S. Gov't Review]. 2012;119(14):3226–35.
  • Hayashi N, Takahashi K, Abe Y, Kashiwakura I. Placental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells support hematopoietic recovery of X-irradiated human CD34+ cells. Life Sci. [Research Support, Non-U.S. Gov't]. 2009;84(17–18):598–605.
  • Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett. [Review]. 2006;580(12):2860–8.
  • Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2010;6(3):251–64.
  • Chotinantakul K, Leeanansaksiri W. Hematopoietic stem cell development, niches, and signaling pathways. Bone Marrow Res. 2012;2012:270425.
  • Jacobsen SE. Defining ‘stemness’: Notch and Wnt join forces?. Nat Immunol. [Comment News]. 2005;6(3):234–6.
  • Docheva D, Haasters F, Schieker M. Mesenchymal stem cells and their cell surface receptors. Curr Rheumatol Rev. 2008;4(3):155–60.
  • Wang Y, Tu W, Lou Y, Xie A, Lai X, Guo F, et al. Mesenchymal stem cells regulate the proliferation and differentiation of neural stem cells through Notch signaling. Cell Biol Int. [Research Support, Non-U.S. Gov't]. 2009;33(11):1173–9.
  • Xu N, Liu H, Qu F, Fan J, Mao K, Yin Y, et al. Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol. [Research Support, Non-U.S. Gov't]. 2013;94(1):33–9.
  • Xie J, Wang W, Si JW, Miao XY, Li JC, Wang YC, et al. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells. Cell Immunol. [Research Support, Non-U.S. Gov't]. 2013;281(1):68–75.
  • Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. [Research Support, Non-U.S. Gov't Review]. 2011;208(3):421–8.
  • Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. 2013;14(6):329–40.
  • Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011. doi: 10.1155/2011/396076.
  • Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. 2012;30(2):232–42.
  • Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2006;124(2):407–21.
  • Mason HA, Rakowiecki SM, Gridley T, Fishell G. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2006;28(1–2):49–57.
  • Gu JW, Rizzo P, Pannuti A, Golde T, Osborne B, Miele L. Notch signals in the endothelium and cancer ‘stem-like’ cells: opportunities for cancer therapy. Vasc Cell 2012;4:7.
  • Joussen AM, Doehmen S, Le ML, Koizumi K, Radetzky S, Krohne TU, et al. TNF-alpha mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis. [Research Support, Non-U.S. Gov't]. 2009;15:1418–28.
  • Chiou SK, Jones MK, Tarnawski AS. Survivin – an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med Sci Monit. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. 2003;9(4):PI25–9.
  • Chadwick N, Nostro MC, Baron M, Mottram R, Brady G, Buckle AM. Notch signaling induces apoptosis in primary human CD34+ hematopoietic progenitor cells. Stem Cells [Research Support, Non-U.S. Gov't]. 2007;25(1):203–10.
  • Wang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2006;5(3):483–93.
  • Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J Biol Chem. [Research Support, N.I.H., Extramural]. 2009;284(46):31921–7.
  • Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N. Bone marrow neoplastic niche in leukemia. Hematology. 2013;19(4):232–8
  • Doan P, Chute J. The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia. 2012;26(1):54–62.
  • Anand S. A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell. 2013;5(1):2.
  • Stoelting S, Heinze G, Nadrowitz R, Wagner T, Peters SO. Bone marrow-derived endothelial cells contribute to angiogenesis in murine WEHI and JC tumors. Anticancer Res. [Evaluation Studies]. 2008;28(2A):771–7.
  • Kwon S-M, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, et al. Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 2008;118(2):157–65.
  • Drake CJ, Fleming PA. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood. 2000;95(5):1671–9.
  • Kwon S-M, Alev C, Asahara T. The role of notch signaling in endothelial progenitor cell biology. Trends Cardiovasc Med. 2009;19(5):170–3.
  • Ferrari N, Glod J, Lee J, Kobiler D, Fine HA. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther. 2003;10(8):647–56.
  • Irmisch A, Huelsken J. Metastasis: New insights into organ-specific extravasation and metastatic niches. Exp Cell Res. 2013;319(11):1604–10.
  • Descot A, Oskarsson T. The molecular composition of the metastatic niche. Exp Cell Res. 2013;319(11):1679–86.
  • Tao J, Erez A, Lee B. One NOTCH further: Jagged 1 in bone metastasis. Cancer Cell [Comment]. 2011;19(2):159–61.
  • Oskarsson T, Massague J. Extracellular matrix players in metastatic niches. Embo J. 2012;31(2):254–6.
  • Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS. Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. 2011;7(11):1285–97.
  • Leong KG, Karsan A. Recent insights into the role of Notch signaling in tumorigenesis. Blood [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Review]. 2006;107(6):2223–33.
  • Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J, Kitajewski J. Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2011;2(12):1106–16.
  • Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis. Histol Histopathol. [Research Support, U.S. Gov't, P.H.S. Review]. 2012;27(2):151–6.
  • Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2012;72(11):2768–79.
  • Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P, et al. Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. 2010;177(3):1459–69.
  • Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. [Research Support, Non-U.S. Gov't]. 2007;117(12):3988–4002.
  • Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. 2011;19(2):192–205.
  • Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. 2007;3(1):7–17.
  • Abroun S, Saki N, Fakher R, Asghari F. Biology and bioinformatics of myeloma cell. Lab Hematol. [Review]. 2012;18(4):30–41.
  • Basak GW, Srivastava AS, Malhotra R, Carrier E. Multiple myeloma bone marrow niche. Curr Pharm Biotechnol. [Review]. 2009;10(3):345–6.
  • Mirandola L, Apicella L, Colombo M, Yu Y, Berta DG, Platonova N, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia. 2013;27(7):1558–66.
  • Colombo M, Mirandola L, Platonova N, Apicella L, Basile A, Figueroa AJ, et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia [Research Support, Non-U.S. Gov't Review]. 2013;27(5):1009–18.
  • Kim SY, Min HJ, Park HK, Oh B, Kim TY, She CJ, et al. Increased copy number of the interleukin-6 receptor gene is associated with adverse survival in multiple myeloma patients treated with autologous stem cell transplantation. Biol Blood Marrow Transplant. [Research Support, Non-U.S. Gov't]. 2011;17(6):810–20.
  • Tzoneva G, Ferrando AA. Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol. [Review]. 2012;360:163–82.
  • Seke Etet PF, Vecchio L, Nwabo Kamdje AH. Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways? Cell Signal. [Review]. 2012;24(7):1433–43.
  • Galluzzo P, Bocchetta M. Notch signaling in lung cancer. Expert Rev Anticancer Ther. [Research Support, N.I.H., Extramural Review]. 2011;11(4):533–40.
  • van den Brandt J, Kwon SH, McPherson KG, Petrovic S, Zettl A, Muller-Hermelink HK, et al. Unexpected features of acute T lymphoblastic lymphomas in Notch1IC transgenic rats. Eur J Immunol. [Research Support, Non-U.S. Gov't]. 2006;36(8):2223–34.
  • Aster JC, Blacklow SC, Pear WS. Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. 2011;223(2):262–73.
  • Jundt F, Probsting KS, Anagnostopoulos I, Muehlinghaus G, Chatterjee M, Mathas S, et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood [Research Support, Non-U.S. Gov't]. 2004;103(9):3511–5.
  • Yin L, Velazquez OC, Liu ZJ. Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol. [Research Support, Non-U.S. Gov't Review]. 2010;80(5):690–701.
  • Kawamata S, Du C, Li K, Lavau C. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene. 2002;21(24):3855–63.
  • Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, et al. Notch activation inhibits AML growth and survival: a potential therapeutic approach. J Exp Med. [Research Support, Non-U.S. Gov't]. 2013;210(2):321–37.
  • Gan ZH, Chen Y. [Notch signaling pathway and multiple myeloma]. Zhongguo Shi Yan Xue Ye Xue Za Zhi [Review]. 2009;17(5):1380–3.
  • Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D, et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Review]. 2010;1806(2):258–67.
  • Wang Z, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res. [Research Support, N.I.H., Extramural Review]. 2011;31(4):1105–13.
  • Ristorcelli E, Lombardo D. Targeting Notch signaling in pancreatic cancer. Expert Opin Ther Targets [Research Support, Non-U.S. Gov't Review]. 2010;14(5):541–52.
  • Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther. [Review]. 2010;17(8):523–31.
  • Mittal S, Subramanyam D, Dey D, Kumar RV, Rangarajan A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. Mol Cancer [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. 2009;8:128.
  • Al-Hussaini H, Subramanyam D, Reedijk M, Sridhar SS. Notch signaling pathway as a therapeutic target in breast cancer. Mol Cancer Ther. [Review]. 2011;10(1):9–15.
  • Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL, et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res. 2004;64(19):6854–7.
  • Scorey N, Fraser SP, Patel P, Pridgeon C, Dallman MJ, Djamgoz MB. Notch signalling and voltage-gated Na+ channel activity in human prostate cancer cells: independent modulation of in vitro motility. Prostate Cancer Prostatic Dis. [Research Support, Non-U.S. Gov't]. 2006;9(4):399–406.
  • Wang Z, Li Y, Banerjee S, Kong D, Ahmad A, Nogueira V, et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. 2010;109(4):726–36.
  • Lino MM, Merlo A, Boulay JL. Notch signaling in glioblastoma: a developmental drug target? BMC Med. [Research Support, Non-U.S. Gov't Review]. 2010;8:72.
  • Cichocki F, Felices M, McCullar V, Presnell SR, Al-Attar A, Lutz CT, et al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol. [Research Support, N.I.H., Extramural]. 2011;187(12):6171–5.
  • Allman D, Aster JC, Pear WS. Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. 2002;187:75–86.
  • Singh SK, Vartanian A, Burrell K, Zadeh G. A microRNA link to glioblastoma heterogeneity. Cancers 2012;4(3):846–72.
  • Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, et al. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood [Research Support, Non-U.S. Gov't]. 2011;117(26):7053–62.
  • Wang Z, Li Y, Kong D, Ahmad A, Banerjee S, Sarkar FH. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 2010;292(2):141–8.
  • Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, et al. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J Nanobiotechnol. 2011;9(1):40.
  • Pang RT, Leung CO, Lee C-L, Lam KK, Ye T-M, Chiu PC, et al. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC Cancer. 2013;13(1):25.
  • Mei J, Bachoo R, Zhang CL. MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol. 2011;31(17):3584–92.
  • Coskun E, Neumann M, Schlee C, Liebertz F, Heesch S, Goekbuget N, et al. MicroRNA profiling reveals aberrant microRNA expression in adult ETP-ALL and functional studies implicate a role for miR-222 in acute leukemia. Leuk Res. 2013;37(6):647–56.
  • Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, et al. MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. [Research Support, N.I.H., Extramural Review]. 2012;8(4):212–27.
  • Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA [Research Support, Non-U.S. Gov't]. 2009;106(49):20794–9.
  • Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. [Research Support, Non-U.S. Gov't]. 2011;63(6):1582–90.
  • Rossi M, Pitari MR, Amodio N, Di Martino MT, Conforti F, Leone E, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. [Research Support, Non-U.S. Gov't]. 2013;228(7):1506–15.
  • Tammam J, Ware C, Efferson C, O'Neil J, Rao S, Qu X, et al. Down-regulation of the Notch pathway mediated by a gamma-secretase inhibitor induces anti-tumour effects in mouse models of T-cell leukaemia. Br J Pharmacol. 2009;158(5):1183–95.
  • Liu F, Xiong Y, Zhao Y, Tao L, Zhang Z, Zhang H, et al. Identification of aberrant microRNA expression pattern in pediatric gliomas by microarray. Diagnostic Pathol. 2013;8(1):158.
  • Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.