Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 14, 2011 - Issue 1
256
Views
20
CrossRef citations to date
0
Altmetric
Article

Effect of magnesium chloride on psychomotor activity, emotional status, and acute behavioural responses to clonidine, d-amphetamine, arecoline, nicotine, apomorphine, and L-5-hydroxytryptophan

, , &
Pages 10-24 | Published online: 19 Jul 2013

References

  • Kirov GK, Birch NJ, Steadman P, Ramsey RG. Plasma Mg levels in a population of psychiatric patients: correlations with symptoms. Neuropsychobiology 1994;30(2–3):73–8.
  • Nechifor M, Văideanu C, Boisteanu P, Mindreci I, Cuciureanu R, Nechifor C. Changes in Mg2+ and other cations plasmatic concentration in patients with major depression. In: , Escanero JF, Alda JO, Guerra M, Durlach J (eds.) Advances in Mg research physiology, pathology and pharmacology. Zaragoza: Prensas Universitarias de Zaragoza; 2003. p. 177–81.
  • Nechifor M. Mg in psychoses. In: , Nishizawa Y, Morii H, Durlach J (eds.) New perspectives in Mg research: nutrition and health. London: Springer-Verlag; 2007. p. 369–80.
  • Grimaldi BL. The central role of Mg deficiency in Tourette's syndrome: causal relationships between Mg deficiency, altered biochemical pathways and symptoms relating to Tourette's syndrome and several reported comorbid conditions. Med Hypotheses 2002;58(1):47–60.
  • Rasmussen HH, Mortensen PB, Jensen IW. Depression and Mg deficiency. Int J Psychiatry Med 1989;19(1):57–63.
  • Decollogne S, Tomas A, Lecerf C, Adamowicz E, Michel S. NMDA receptor complex blockade by oral administration of Mg: comparison with MK-801. Pharmacol Biochem Behav 1997;58(1):261–68.
  • Singewald N, Sinner C, Hetzenauer A, Sartori SB, Murck H. Mg-deficient diet alters depression- and anxiety-related behavior in mice – influence of desipramine and Hypericum perforatum extract. Neuropharmacology 2004;47(8):1189–97.
  • Poleszak E, Szewczyk B, Kedzierska E, Wlaz P, Pilc A, Nowak G. Antidepressant- and anxiolytic-like activity of Mg in mice. Pharmacol Biochem Behav 2004;78(1):7–12.
  • Fromm L, Heath DL, Vink R, Nimmo AJ. Mg attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats. J Am Coll Nutr 2004;23(5):529S–33S.
  • Iezhitsa IN, Onishchenko NV, Churbakova NV, Parshev VV, Petrov VI, Spasov AA. Effect of Mg supplementation containing mineral bischofite (MgCl2 · 6H2O) solution and pyridoxine hydrochloride on erythrocyte Mg depletion and behaviour of rats after three-month alcoholization. Magnes Res 2002;15(3–4):179–89.
  • Iezhitsa I, Onishchenko N, Churbakova N, Parshev V, Petrov VI. Complex supplementation containing mineral bischofite (MgCl2 · 6H2O) solution and pyridoxine hydrochloride normalises ethanol-induced Mg depletion and corrects some behavioural disturbances of animals during chronic alcoholisation. Eur Neuropsychopharmacol 2002;12( Suppl 3):S426–7 (Abstract).
  • Majumdar P, Boylan LM. Alteration of tissue Mg levels in rats by dietary vitamin B6 supplementation. Int J Vitam Nutr Res 1989;59(3):300–3.
  • Durlach J, Durlach V, Bac P, Bara M, Guiet-Bara A. Mg and therapeutics. Magnes Res 1994;7(3–4):313–28.
  • Durlach J. Données actuelles sur les mécanismes de synergie entre vitamine B6 et magnésium. J Méd Besançon 1969;5:349–59 (French).
  • Durlach J. Mg in clinical practice. London: John Libbey; 1988.
  • Bara M, Guiet-Bara A, Durlach J. Comparative experimental study of Mg lactate, vitamin B6 and their association on the permeability of a human membrane. 2. Effects on cellular and paracellular ionic transfer through isolated amniotic membrane. Magnes Res 1998;11(4):259–70.
  • Boylan LM, Spallholz JE. In vitro evidence for a relationship between Mg and vitamin B6. Magnes Res 1990;3:79–85.
  • Bureš Y, Burešová O, Huston JP. Techniques and basic experiments for the study of brain and behavior. Amsterdam, New York: Elsevier Science Publishers B.V; 1983.
  • Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985;14(3):149–67.
  • Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266(21):730–2.
  • Detke MJ, Lucki I. Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 1996;73(1–2):43–6.
  • Pawlowski L, Mazela H. Effects of antidepressant drugs, selective noradrenaline- or 5-hydroxytryptamine uptake inhibitors, on apomorphine-induced hypothermia in mice. Psychopharmacology (Berl) 1986;88(2):240–6.
  • Puech AJ, Rioux P, Poncelet M, Brochet D, Chermat R, Simon P. Pharmacological properties of new antipsychotic agents: use of animal models. Neuropharmacology 1981;20(12B):1279–84.
  • Selden EM, Convery ME, Stites MM, Domino EF. Pharmacologic evidence that high dose chronic amitriptyline and desipramine down-regulate alpha 2-receptor-mediated hypothermia in the rat. Arch Int Pharmacodyn Ther 1986;281(2):198–208.
  • van Zwieten PA. The renaissance of centrally acting antihypertensive drugs. J Hypertens Suppl 1999;17(3):S15–21.
  • Costall B, Naylor RJ. On the mode of action of apomorphine. Eur J Pharmacol 1973;21(3):350–61.
  • Andreeva NI. Methodical directions on study of antidepressive activity of pharmacological substances. In: , Khabriev RU (ed.) The handbook on experimental (preclinical) study of new pharmacological substances. 2nd, advanced and added edition, Russian Federation. Moscow: Medicine; 2005. p. 244–53.
  • Green AR, Heal DJ, Johnson P, Laurence BE, Nimgaonkar VL. Antidepressant treatments: effects in rodents on dose-response curves of 5-hydroxytryptamine- and dopamine-mediated behaviours and 5-HT2 receptor number in frontal cortex. Br J Pharmacol 1983;80(2):377–85.
  • Smith LM, Peroutka SJ. Differential effects of 5-hydroxytryptamine1a selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 1986;24(6):1513–9.
  • Shearman GT, Tolcsvai L. Effect of the selective 5-HT3 receptor antagonists ICS 205–930 and MDL 72222 on 5-HTP-induced head shaking and behavioral symptoms induced by 5-methoxy-N,N,dimethyltryptamine in rats: comparison with some other 5-HT receptor antagonists. Psychopharmacology (Berl) 1987;92(4):520–3.
  • Pranzatelli MR, Huang YY, Dollison AM, Stanley M. Brainstem serotonergic hyperinnervation modifies behavioral supersensitivity to 5-hydroxytryptophan in the rat. Brain Res Dev Brain Res 1989;50(1):89–99.
  • Lessin AW. The pharmacological evaluation of monoamine oxidase inhibitors. Biochem Pharmacol 1959;2:290–8.
  • Men'shikov VV. Laboratory methods of clinic testings. Moscow: Meditsina; 1987 (Russian).
  • Stockert M, Serra J, De Robertis E. Effect of olfactory bulbectomy and chronic amitryptiline treatment in rats. 3H-imipramine binding and behavioral analysis by swimming and open field tests. Pharmacol Biochem Behav 1988;29:681–6.
  • Kelly JP, Leonard BE. The effect of tianeptine and sertraline in three animal models of depression. Neuropharmacology 1994;33:1011–6.
  • Pare WP. Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav 1994;55:433–9.
  • Meerlo P, Overkamp GJ, Benning MA, Koolhaas JM, Van den Hoofdakker RH. Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol Behav 1996;60:115–19.
  • Ramos A, Berton O, Mormede P, Chaouloff F. A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav Brain Res 1997;85:57–69.
  • Handley SL, McBlane JW. An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods 1993;29:129–38.
  • Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 1996;54:21–30.
  • Spasov AA, Iezhitsa IN, Onischenko NV, Churbakova NV. Effect of MgCl2 · 6H2O with vitamin B6 on the emotional status and Mg content in brain structures of rats fed with Mg-deficient diet. Abstracts of the 8th ECNP Regional Meeting. Moscow, Russia, April 14–16, 2005. Eur Neuropsychopharmacology 2005;15( Suppl 2):S183–4 (Abstract).
  • Poenaru S, Aymard P, Durlach J, Manicom R, Poenaru L, Rouhani S, et al. Regional distribution of Mg in the cerebral tissues in normal and Mg deficient rat. Magnes Res 1991;4(3/4):246 (Abstract).
  • Poenaru S, Manicom R, Rouhani S, Aymard P, Bajenaru O, Rayssiguier Y, et al. Stability of brain content of Mg in experimental hypomagnesemia. Brain Res 1997;769(2):329–32.
  • Altura BM, Gebrewold A, Zhang A, Altura BT, Gupta RK. Short-term reduction in dietary intake of magnesium causes deficits in brain intracellular free Mg2+ and [H+]i but not high-energy phosphates as observed by in vivo 31P-NMR. Biochim Biophys Acta 1997;1358(1):1–5.
  • Morris ME. Brain and CSF magnesium concentrations during magnesium deficit in animals and humans: neurological symptoms. Magnes Res 1992;5(4):303–13.
  • Kantak KM. Mg deficiency alters aggressive behaviour and catecholamine function. Behav Neurosci 1988;102(2):304–11.
  • Blanchard DC, Sakai RR, McEwen B, Weiss SM, Blanchard RJ. Subordination stress: behavioral, brain, and neuroendocrine correlates. Behavioral Brain Research 1993;58:113–21.
  • Nechifor M. Mg involvement in neuropsychiatric diseases. In: , Nechifor M, Porr PJ (eds.) Mg involvement in biology and pharmacology. Casa Cărții de Știință: Cluj-Napoca; 2003. p. 166–72.
  • Nechifor M, Văideanu C, Mȋndreci I, Borza C. Variation of Mg concentrations in psychosis. In: , Porr PJ, Nechifor M, Durlach J (eds.) Advances in Mg research (new data). John Libbey Eurotext; 2006. p. 25–30
  • Young LT, Robb JC, Levitt AJ, Cooke RG, Joffe RT. Serum Mg2+ and Ca2+/Mg2+ ratio in major depressive disorder. Neuropsychobiology 1996;34(1):26–8.
  • Zimmerman M, Chelminski I, McDermut W. Major depressive disorder and axis I diagnostic comorbidity. J Clin Psychiatry 2002;63(3):187–93.
  • Seelig MS. Consequences of Mg deficiency on the enhancement of stress reactions; preventive and therapeutic implications (a review). J Am Coll Nutr 1994;13(5):429–46.
  • Bardgett ME, Schultheis PJ, McGill DL, Richmond RE, Wagge JR. Mg deficiency impairs fear conditioning in mice. Brain Res 2005;1038(1):100–6.
  • Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984;309:261–3.
  • Morris RM. Brain and CSF Mg concentrations during Mg deficit in animals and humans: neurological symptoms. Magnes Res 1992;5:303–13.
  • Holl JE, Resurreccion AV, Park LE, Caster WO. Barbiturate and amphetamine activity in rats fed a Mg-deficient diet. Res Commun Chem Pathol Pharmacol 1978;22(3):501–12.
  • Bac P. Audiogenic seizure in the mouse according to strain and sex: the effect of the Mg ration and neuromediators. Reprod Nutr Dev 1981;21(3):429–40 (French).
  • Kantak KM. Mg alters the potency of cocaine and haloperidol on mouse aggression. Psychopharmacology (Berl) 1989;99(2):181–8.
  • Poleszak E. Modulation of antidepressant-like activity of Mg by serotonergic system. J. Neural Transm 2007;114(9):1129–34.
  • Poleszak E, Nowak G. Mg in pathophysiology and therapy of affective disorders. J Element (Biuletyn Magnezologiczny) 2006;11(3):389–97.
  • Poenaru S, Rouhani S, Durlach J, Aymard N, Belkahla F, Rayssiguier Y, Iovino M. Vigilance states and cerebral monoamine metabolism in experimental magnesium deficiency. Magnesium 1984;3(3):145–51.
  • McCoy MA, Young PB, Hudson AJ, Davison G, Kennedy DG. Regional brain monoamine concentrations and their alterations in bovine hypomagnesaemic tetany experimentally induced by a magnesium-deficient diet. Res Vet Sci 2000;69(3):301–7.
  • Amyard N, Leyris A, Monier C, Francès H, Boulu RG, Henrotte JG. Brain catecholamines, serotonin and their metabolites in mice selected for low (MGL) and high (MGH) blood magnesium levels. Magnes Res 1995;8(1):5–9.
  • Janowsky DS, Risch SC, Gillin JC. Adrenergic-cholinergic balance and the treatment of affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 1983;7(2–3):297–307.
  • Modak AT, Montanez J, Stavinoha WB. Mg deficiency: brain acetylcholine and motor activity. Neurobehav Toxicol 1979;1(3):187–91.
  • Dakshinamurti K, Paulose CS, Viswanathan M, Siow YL. Neuroendocrinology of pyridoxine deficiency. Neurosci Biobehav Rev 1988;12(3–4):189–93.
  • Dakshinamurti K, Paulose CS, Viswanathan M. Neurobiology of pyridoxine. Ann N Y Acad Sci 1990;585:128–44.
  • Viswanathan M, Siow YL, Paulose CS, Dakshinamurti K. Pineal indoleamine metabolism in pyridoxine-deficient rats. Brain Res 1988;473(1):37–42.
  • Guilarte TR. Effect of vitamin B6 nutrition on the levels of dopamine, dopamine metabolites, dopa decarboxylase activity, tyrosine, and GABA in the developing rat corpus striatum. Neurochem Res 1989;14:571–8.
  • Park YK, Linkswiler H. Effect of vitamin B6 depletion in adult man on the plasma concentration and the urinary excretion of free amino acids. J Nutr 1971;101:185–92.
  • Wasynczuk A, Kirksey A, Morre DM Effects of maternal vitamin B6 deficiency on specific regions of developing rat brain: amino acid concentrations. J Nutr 1983;113:735–45.
  • Lindena J, Friedel R, Rapp K, Sommerfeld U, Trautschold I, Deerberg F. Long-term observation of plasma and tissue enzyme activities in the rat. Mech Ageing Dev 1980;14(3–4):379–407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.