Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 34, 2012 - Issue 7
182
Views
2
CrossRef citations to date
0
Altmetric
Review

Angiogenesis in neurological disorders: a review

, &
Pages 627-635 | Published online: 12 Nov 2013

References

  • de Almodovar CR ZSCP. Angiogenesis in the central nervous system. In: Angiogenesis: an integrative approach from science to medicine. New York: Springer; 2008.
  • Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, et al.. SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat Med. 2003;9:900–6.
  • Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61:6020–4.
  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al.. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95:4607–12.
  • Monsky WL, Fukumura D, Gohongi T, Ancukiewcz M, Weich HA, Torchilin VP, et al.. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 1999;59:4129–35.
  • Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 1994;54:4564–8.
  • Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S, Smith JK, et al.. Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol. 2005;12:1232–40.
  • Plate KH, Mennel HD. Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol. 1995;47:89–94.
  • Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavstev I, et al.. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6:553–63.
  • Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand SJ, et al.. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol. 1999;159:391–400.
  • Shibuya M. Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. FEBS J. 2009;276:4636–43.
  • Demir R, Kayisli UA, Cayli S, Huppertz B. Sequential steps during vasculogenesis and angiogenesis in the very early human placenta. Placenta. 2006;27:535–9.
  • Seval Y, Korgun ET, Demir R. Hofbauer cells in early human placenta: possible implications in vasculogenesis and angiogenesis. Placenta. 2007;28:841–5.
  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, et al.. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997;277:55–60.
  • Kleihues PBP, Plate KH, Ohgaki H, Cavenee WK. Tumors of the nervous system. Lyon: IARC Press; 2000.
  • Birlik B, Canda S, Ozer E. Tumour vascularity is of prognostic significance in adult, but not paediatric astrocytomas. Neuropathol Appl Neurobiol. 2006;32:532–8.
  • Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77:362–72.
  • Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.
  • Saleh M, Stacker SA, Wilks AF. Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res. 1996;56:393–401.
  • Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, et al.. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003;63:2742–6.
  • Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol. 2002;20:4368–80.
  • Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.
  • Chakravarti A, Dicker A, Mehta M. The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol Biol Phys. 2004;58:927–31.
  • Zhang Y, Zhang N, Dai B, Liu M, Sawaya R, Xie K, et al.. FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res. 2008;68:8733–42.
  • Kerber M, Reiss Y, Wickersheim A, Jugold M, Kiessling F, Heil M, et al.. Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 2008;68:7342–51.
  • Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67:5064–6.
  • Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, et al.. Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest. 2000;80:837–49.
  • Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol. 1998;153:1459–66.
  • Zadeh G, Qian B, Okhowat A, Sabha N, Kontos CD, Guha A. Targeting the Tie2/Tek receptor in astrocytomas. Am J Pathol. 2004;164:467–76.
  • Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3:775–81.
  • Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(6):588–610.
  • Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 2005;7(4):436–51.
  • Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res. 2003;9(12):4578–85.
  • Kaye A, Laws E, editors. Brain tumors, an encyclopedic approach. 2nd ed. London: Churcill Livingstone; 2001.
  • Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, Clark WC, et al.. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest. 1993;91:153–9.
  • Yamasaki F, Yoshioka H, Hama S, Sugiyama K, Arita K, Kurisu K. Recurrence of meningiomas. Cancer. 2000;89:1102–10.
  • Shono T, Inamura T, Torisu M, Suzuki SO, Fukui M. Vascular endothelial growth factor and malignant transformation of a meningioma: case report. Neurol Res. 2000;22:189–93.
  • Lopes MB. Angiogenesis in brain tumors. Microsc Res Tech. 2003;60:225–30.
  • Kleihues PCW. Pathology and genetics of tumours of the nervous system. Lyon: IARC Press; 2000.
  • Wizigmann-Voos S, Breier G, Risau W, Plate KH. Up-regulation of vascular endothelial growth factor and its receptors in von Hippel–Lindau disease-associated and sporadic hemangioblastomas. Cancer Res. 1995;55:1358–64.
  • Gault J, Sarin H, Awadallah NA, Shenkar R, Awad IA. Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. Neurosurgery. 2004;55:1–16; discussion 16–7.
  • Harrigan MR. Angiogenic factors in the central nervous system. Neurosurgery. 2003;53:639–60; discussion 60–1.
  • Hashimoto T, Lam T, Boudreau NJ, Bollen AW, Lawton MT, Young WL. Abnormal balance in the angiopoietin-tie2 system in human brain arteriovenous malformations. Circ Res. 2001;89:111–3.
  • Hashimoto T, Mesa-Tejada R, Quick CM, Bollen AW, Joshi S, Pile-Spellman J, et al.. Evidence of increased endothelial cell turnover in brain arteriovenous malformations. Neurosurgery. 2001;49:124–31; discussion 31–2.
  • Hashimoto T, Lawton MT, Wen G, Yang GY, Chaly T, Stewart CL, et al.. Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery. 2004;54:410–23; discussion 23–5.
  • Rothbart D, Awad IA, Lee J, Kim J, Harbaugh R, Criscuolo GR. Expression of angiogenic factors and structural proteins in central nervous system vascular malformations. Neurosurgery. 1996;38:915–24; discussion 24–5.
  • Uranishi R, Baev NI, Kim JH, Awad IA. Vascular smooth muscle cell differentiation in human cerebral vascular malformations. Neurosurgery. 2001;49:671–9; discussion 679–80.
  • Uranishi R, Baev NI, Ng PY, Kim JH, Awad IA. Expression of endothelial cell angiogenesis receptors in human cerebrovascular malformations. Neurosurgery. 2001;48:359–67; discussion 367–8.
  • Zadeh G, Guha A. Angiogenesis in nervous system disorders. Neurosurgery. 2003;53:1362–74; discussion 74–6.
  • Seker A, Yildirim O, Kurtkaya O, Sav A, Gunel M, Pamir MN, et al.. Expression of integrins in cerebral arteriovenous and cavernous malformations. Neurosurgery. 2006;58:159–68; discussion 159–68.
  • Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, et al.. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994;8:1897–909.
  • Patan S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res. 1998;56:1–21.
  • Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, et al.. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature. 1995;376:70–4.
  • Zubac DP, Bostad L, Kihl B, Seidal T, Wentzel-Larsen T, Haukaas SA. The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival. J Urol. 2009;182:2144–9.
  • Pour L, Svachova H, Adam Z, Mikulkova Z, Buresova L, Kovarova L, et al.. Levels of angiogenic factors in patients with multiple myeloma correlate with treatment response. Ann Hematol. 2010;89:385–9.
  • Stapleton CJ, Armstrong DL, Zidovetzki R, Liu CY, Giannotta SL, Hofman FM. Thrombospondin-1 modulates the angiogenic phenotype of human cerebral arteriovenous malformation endothelial cells. Neurosurgery. 2011;68:1342–53; discussion 1353.
  • Massague J. Receptors for the TGF-beta family. Cell. 1992;69:1067–70.
  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, et al.. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA. 2000;97:2626–31.
  • Langley RR, Fidler IJ. Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev. 2007;28:297–321.
  • Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 2002;3:53–7.
  • Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989;161:851–8.
  • Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, et al.. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 2000;60:4959–67.
  • Stewart PA, Hayakawa K, Farrell CL, del Maestro RF. Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. Evidence for a blood–brain barrier defect. J Neurosurg. 1987;67:697–705.
  • Leone A, Flatow U, King CR, Sandeen MA, Margulies IM, Liotta LA, et al.. Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell. 1991;65:25–35.
  • Harabin-Slowinska M, Slowinski J, Konecki J, Mrowka R. Expression of adhesion molecule CD44 in metastatic brain tumors. Folia Neuropathol. 1998;36:179–84.
  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.
  • Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med. 1998;49:407–24.
  • Eichhorn ME, Kleespies A, Angele MK, Jauch KW, Bruns CJ. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg. 2007;392:371–9.
  • Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science. 2006;312:1171–5.
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.
  • Webb T. Vascular normalization: study examines how antiangiogenesis therapies work. J Natl Cancer Inst. 2005;97:336–7.
  • Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, et al.. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878–86.
  • O’Leary JJ, Shapiro RL, Ren CJ, Chuang N, Cohen HW, Potmesil M. Antiangiogenic effects of camptothecin analogues 9-amino-20(S)-camptothecin, topotecan, and CPT-11 studied in the mouse cornea model. Clin Cancer Res. 1999;5:181–7.
  • Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn JC. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery. 2004;55:426–32; discussion 432.
  • Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park). 2005;19:7–16.
  • Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, et al.. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 2001;61:6624–8.
  • Lamszus K, Brockmann MA, Eckerich C, Bohlen P, May C, Mangold U, et al.. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin. Clin Cancer Res. 2005;11:4934–40.
  • Norden AD, Drappatz J, Wen PY. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol. 2008;7:1152–60.
  • Sathornsumetee S, Rich JN. Antiangiogenic therapy in malignant glioma: promise and challenge. Curr Pharm Des. 2007;13:3545–58.
  • Reardon DA, Herndon JE, Peters K, Desjardins A, Coan A, Lou E, et al.. Outcome after bevacizumab clinical trial therapy among recurrent grade III malignant glioma patients. J Neurooncol. 2012;107(1):213–21.
  • Ahluwalia MS. 2010 Society for Neuro-Oncology Annual Meeting: a report of selected studies. Expert Rev Anticancer Ther. 2011;11(2):161–3.
  • Chi AS, Norden AD, Wen PY. Antiangiogenic strategies for treatment of malignant gliomas. Neurotherapeutics. 2009;6:513–26.
  • Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al.. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.
  • Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, et al.. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst. 2005;97:880–7.
  • Kosmas C, Kalofonos H, Epenetos AA. Monoclonal antibodies. Future potential in cancer chemotherapy. Drugs. 1989;38:645–57.
  • Omuro AM, Faivre S, Raymond E. Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther. 2007;6:1909–19.
  • Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al.. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.
  • Kinsella P, Howley R, Doolan P, Clarke C, Madden SF, Clynes M, et al.. Characterization and response of newly developed high-grade glioma cultures to the tyrosine kinase inhibitors, erlotinib, gefitinib and imatinib. Exp Cell Res. 2012;318(5):641–52.
  • Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, et al.. European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol. 2008;26(28):4659–65.
  • Reardon DA, Dresemann G, Taillibert S, Campone M, van den Bent M, Clement P, et al.. Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma. Br J Cancer. 2009;101(12):1995–2004.
  • Reardon DA, Desjardins A, Vredenburgh JJ, Herndon JE, Coan A, Gururangan S, et al.. Phase II study of Gleevec plus hydroxyurea in adults with progressive or recurrent low-grade glioma. Cancer. 2012; to be published.
  • Razis E, Selviaridis P, Labropoulos S, Norris JL, Zhu MJ, Song DD, et al.. Phase II study of neoadjuvant imatinib in glioblastoma: evaluation of clinical and molecular effects of the treatment. Clin Cancer Res. 2009;15(19):6258–66.
  • Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, et al.. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol. 2007;25:1651–7.
  • Bold G, Altmann KH, Frei J, Lang M, Manley PW, Traxler P, et al.. New anilinophthalazines as potent and orally well absorbed inhibitors of the VEGF receptor tyrosine kinases useful as antagonists of tumor-driven angiogenesis. J Med Chem. 2000;43:3200.
  • Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, et al.. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 2000;60:2178–89.
  • Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM, et al.. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J. 2002;16(1):108–10.
  • Brockmann MA, Ulbricht U, Grüner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery. 2003;52(6):1391–9
  • Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res. 2003;9(12):4578–85.
  • Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, et al.. The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res. 2005;65(20):9355–62.
  • de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y, et al.. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol. 2010;12:233–42.
  • Narayana A, Kunnakkat S, Chacko-Mathew J, Gardner S, Karajannis M, Raza S, et al.. Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol. 2010;12:985–990.
  • Gerstner ER, Chen PJ, Wen PY, Jain RK, Batchelor TT, Sorensen G, et al.. Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro-oncol. 2010;12:466–72.
  • Miletic H, Niclou SP, Johansson M, Bjerkvig R. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opin Ther Targets. 2009;13:455–68.
  • Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 2007;67:2729–35.
  • Jouanneau E. Angiogenesis and gliomas: current issues and development of surrogate markers. Neurosurgery. 2008;62:31–50; discussion 50–2.
  • Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al.. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.
  • Beal K, Abrey LE, Gutin PH. Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: analysis of single-agent and combined modality approaches. Radiat Oncol. 2011;6:2.
  • Burkhardt JK, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, et al.. Intra-arterial delivery of bevacizumab after blood–brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg. 2012;77(1):130–4.
  • Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E, et al.. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol. 2010;28(17):2817–23.
  • Reardon DA, Norden AD, Desjardins A, Vredenburgh JJ, Herndon JE, Coan A, et al.. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J Neurooncol. 2009;96:219–230.
  • Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Carliner H, et al.. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol. 2009;27:579–84.
  • Raizer JJ, Abrey LE, Lassman AB, Chang SM, Lamborn KR, Kuhn JG, et al.. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro-oncol. 2010;12:95–103.
  • Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH, et al.. Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol. 2009;98:93–99.
  • Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, et al.. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol. 2004;22:133–42.
  • Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D, et al.. Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer. 2007;96:1047–51.
  • Lamar RE, Spigel DR, Burris HA, Markus TM, Kuzur M, Ervin T, et al.. Phase II trial of radiation therapy/temozolomide followed by temozolomide/sorafenib in the first-line treatment of glioblastoma multiforme (GBM). ASCO Meet Abstr. 2009;27;2018.
  • Wen PY, Alfred Yung WK, Lamborn KR, Dahia PL, Wang YF, Peng B, et al.. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res. 2006;12:4899–907.
  • Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM, et al.. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol. 2008:26:4659–65.
  • Reardon DA, Egorin MJ, Quinn JA, Rich JN, Gururangan S, Vredenburgh JJ, et al.. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol. 2005;23:9359–68.
  • Desjardins A, Reardon DA, Quinn JA, Rich JN, Vredenburgh JJ, Sathornsumetee S, et al.. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Clin Neurooncol. 2007;83:53–60.
  • Sathornsumetee S, Rich JN, Vredenburgh JJ, Desjardins A, Quinn JA, Gururangan S, et al.. Phase I trial of imatinib mesylate, hydroxyurea and vatalanib for patients with recurrent glioblastoma multiforme (GBM). J Clin Neurooncol. 2007;25:2027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.