Publication Cover
Applied Earth Science
Transactions of the Institutions of Mining and Metallurgy: Section B
Volume 122, 2013 - Issue 4
651
Views
10
CrossRef citations to date
0
Altmetric
Review

Plate tectonics caused the demise of banded iron formations

Pages 230-241 | Received 15 Jan 2014, Accepted 31 Mar 2014, Published online: 04 Jun 2014

References

  • Abbott D and Isley A. 2001. Oceanic upwelling and mantle-plume activity: Paleomagnetic tests of ideas on the source of the Fe in early Precambrian iron formations. in Mantle Plumes: their identification through time, (ed. Ernst R E and Buchan K L), Geological Society of America Special Paper 352, 323–339, Boulder, CO, Geological Society of America.
  • Albarede F, Ballhaus C, Blichert-Toft J, Lee C.-T, Marty B, Moynier F and Yin Q.-Z. 2013. Asteroidal impacts and the origin of terrestrial and lunar volatiles, Icarus, 222, 44–52.
  • Angerer T and Hagemann SG. 2010. The BIF-hosted high-grade iron ore deposits in the Archaean Koolyanobbing Greenstone Belt, Western Australia: Structural control on synorogenic- and weathering-related magnetite-, haematite- and goethite-rich iron ore, Econ. Geol., 105, 917–945.
  • Appel PWU. 1987. Geochemistry of the Early Archaean Isua Iron-Formation, West Greenland, in Precambrian Iron-formations, (ed. Appel P W U and LaBerge L), 31–68, Athens, Theophrastus Publications.
  • Atkins PW, Overton TL, Rourke JP, Weller MT and Armstrong FA. 2010. Shriver and Atkins’ inorganic chemistry, 5th edn, Oxford, Oxford University Press.
  • Barley ME, Bekker A and Krapez B. 2005. Late Archaean to Early Palaeoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen, Earth Plan. Sci. Lett., 238, 156–171.
  • Barnett EdeB and Wilson CL. 1957. Inorganic chemistry, 3rd edn, 588, London, Longman Green & Co.
  • Barrett TJ and Fralick PW. 1985. Sediment redeposition in Archaean iron-formation: examples from the Beardmore-Geraldton greenstone belt, Ontario, J. Sed. Pet., 55, 205–212.
  • Barrett TJ and Fralick PW. 1989. Turbidites and iron formations, Beardmore-Geraldton, Ontario: application of a combined ramp/fan model to Archaean clastic and chemical sedimentation, Sedimentology, 36, 221–234.
  • Bau M and Alexander BW. 2009. Distribution of high field strength elements (Y, Zr, REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the NeoArchaean ocean, Precam. Res., 174, 337–346.
  • Bennett SA, Achterberg EP, Connelly DP, Statham PJ, Fones GR and German CR. 2008. The distribution and stabilization of dissolved Fe in deep-sea hydrothermal plumes, Earth Planet. Sci. Lett., 270, 157–167.
  • Beukes NJ, Gutzmer J and Mukhopadhyay J. 2002a. The geology and genesis of high-grade haematite iron ore deposits, Proc Iron Ore 2002, 23–29, Perth, Austral Inst Mining Metall.
  • Beukes NJ, Dorland H, Gutzmer J, Nedachi M and Ohmoto H. 2002b. Tropical laterites, life on land, and the history of atmospheric oxygen in the Palaeoproterozoic, Geology, 30, 191–194.
  • Bolhar R, Van Kranendonk MJ and Kamber BS. 2005. A trace element study of siderite-jasper banded iron-formation in the 3·45 Ga Warrawoona Group, Pilbara Craton - Formation from hydrothermal fluids and shallow seawater, Precam. Res., 137, 93–114.
  • Braterman PS and Cairns-Smith AG. 1987. Iron photoprecipitation and genesis of the banded iron-formations, in Precambrian iron-formations, (ed. Appel P W U and LaBerge G L), 215–245, Athens, Theophrastus Publications.
  • Brocks JJ, Buick R, Summons RE and Logan GA. 2003. A reconstruction of Archaean biological diversity based on molecular fossils from the 2·78 to 2·45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim. Cosmochim. Acta, 67, 4321–4355.
  • Butterfield DA, Jonasson IR, Massoth GJ, Feely RA, Roe KK, Embley RE, Holden JF, McDuff RE, Lilley MD, Delaney JR and Pyle D. 1997. Seafloor eruptions and evolution of hydrothermal fluid chemistry, Philos. Trans.: Math. Phys. Eng. Sci. A, 355A, 369–386.
  • Butuzova GYu. 1969. Recent volcano-sedimentary process in the caldera of Santorin volcano (Aegean Sea) and its influence on the geochemistry of sediments, Dok. Acad. Sci., Earth Sci. Sect., 168, 215–217.
  • Butuzova GYu, Drits VA, aukMorozov AA and Gorschkov AI. 1990. Processes of formation of iron-manganese oxyhydroxides in the Atlantis-II and Thetis Deeps of the Red Sea. In Sediment-hosted mineral deposits, Spec. Pub. Int. Ass. Sedimentol., 11, 57–72.
  • Caldeira CL, Ciminelli VST and Osseo-Asare K. 2010. The role of carbonate ions in pyrite oxidation in aqueous systems, Geochim. Cosmochim. Acta, 74, (6), 1777–1789.
  • Canfield DE. 1998. A new model for Proterozoic ocean chemistry, Nature, 396, 450–452.
  • Cloud P. 1973. Palaeoecological significance of the banded iron formation, Econ. Geol., 68, 1135–1143.
  • Cook PM and Shergold JH. (eds.). 1986. Phosphate deposits of the world. Proterozoic and Cambrian phosphorites, Vol. 1, Cambridge, Cambridge University Press.
  • Czaja AD, Johnson CM, Beard BL, Roden EE, Li WQ and Moorbath S. 2013. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland), Earth Planet. Sci. Lett., 363, 192–203.
  • Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR, Nagler TF, Beukes NJ and Wille M. 2012. Evidence for free oxygen in the NeoArchaean ocean based on coupled iron-molybdenum isotope fractionation, Geochim. Cosmochim. Acta, 86, 118–137.
  • Degens ET and Stoffers P. 1976. Stratified waters as a key to the past, Nature, 263, 22–27.
  • Decarreau A, Petit S, Martin F, Farges F, Vieillard P, Joussein E. 2008. Hydrothermal synthesis, between 75 and 150 degrees C, of high-charge, ferric nontronite, Clays Clay Miner., 56, 322–337.
  • Dehant V, Breuer D, Claeys P, Debaille. V, De Kayser J, Javaux E, Goderis S, Karatekin O, Spohn T, Vandaele AC, Vanhaecke F, Van Hoolst T and Wlilquet V. 2012. From meteorites to evolution and habitability of planets, Planet. Space Sci., 72, 3–17.
  • Dekov VM, Kamenov GD, Stummeyer J, Thiry M, Savelli C, Shanks WC, Fortin D, Kuzmzn E and Vértes A. 2007. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea), Chem. Geol., 245, 103–119.
  • Derry LA and Jacobsen SB. 1990. The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations, Geochim. Cosmochim. Acta, 54, 2965–2977.
  • Dunlop JSR and Buick R. 1981. Archaean epiclastic sediments derived from mafic volcanics, North Pole, Pilbara Block, Western Australia, in Archaean Geology: Second International Symposium (ed. Glover J E and Groves D I), Sp. Pub. Geol. Soc. Aust., 7, 225–234; 1980, Perth.
  • England GL, Rasmussen B, Krapez B and Groves DI. 2002. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology, 49, 1133–1156.
  • Erikson PG. 1999. Sea level changes and the continental freeboard concept: general principles and application to the Precambrian, Precam. Res., 97, 143–154.
  • Farquhar J, Savarino J, Aireau S and Thiemens MH. 2001. Observation of wavelength-sensitive mass-independent sulphur isotope effects during SO2 photolysis: Implications for the early atmosphere, J. Geophys. Res.-Planets, 106, 32829–32839.
  • Farquhar J, Savarino J, Aireau S and Thiemens MH. 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry, Nature, 449, 706–703.
  • Garrels RM and Christ CL. 1965. Solutions, minerals, and equilibria, New York, Harper and Rowe.
  • Garrels RM. 1987. A model for the deposition of the microbanded Precambrian iron formations, Am. J. Sci., 287, 81–106.
  • Garrels RM, Perry EA Jr and Mackenzie FT. 1973. Genesis of Precambrian Iron-formations and the development of atmospheric oxygen, Econ. Geol., 68, 1173–1179.
  • Gole MJ and Klein C. 1981. Banded iron-formations through much of Precambrian time, J. Geol., 89, 169–183.
  • Graf JL. 1978. Rare earth elements, iron formations and seawater, Geochim. Cosmochim. Acta, 42, 1845–1850.
  • Grandstaff DE. 1980. Origin of uraniferous conglomerates at Elliot Lake, Canada, and Witwatersrand, South Africa: Implications for oxygen in the Precambrian Atmosphere, Precam. Res., 13, 1–26.
  • Grassineau NV, Nisbet EG, Bickle MJ, Fowler CMR, Lowry D, Mattey DP, Abell PI and Martin A. 2001. Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe Belt, Zimbabwe, Proc. R. Soc. Lond. Series B, Biolog. Sci., 268, 113–119.
  • Gross GA. 1983. Tectonic systems and the deposition of iron-formation, Precam. Res., 20, 171–187.
  • Hartman H. 1984. The evolution of photosynthesis and microbial mats: a speculation on the banded iron formations, in Microbial mats: stromatolites, (ed. Cohen Y, Castenhole R W and Halverson H O), 449–453, New York, Alan R. Liss, Inc.
  • Hoashi M, Bevacqua DC, Otake T, Watanabe Y, Hickman AH, Utsunomiya S and Ohmoto H. 2009. Primary haematite formation in an oxygenated sea 3·46 billion years ago, Nature Geosci., 2, (4), 301–306.
  • Hoffman PF, Kaufman AJ, Halverson GP and Schrag DP. 1998. A Neoproterozoic snowball Earth, Science, 281, 1342–1346.
  • Holland HD. 1973. The Oceans: A possible source of iron in iron-formations. Econ. Geol., 68, 1169–1172.
  • Holland HD. 1984. The chemical evolution of the atmosphere and oceans. Princeton, Princeton University Press.
  • Holland HD. 2002. Volcanic gases, black smokers and the great oxidation event: Geochim Cosmochim Acta, 66, 3811–3826.
  • Holland HD. 2006. The oxygenation of the atmosphere and oceans, Philos. Trans. R. Soc. B, 361B, 903–915.
  • Huston DL and Logan GA. 2004. Barite, BIFs and bugs: evidence for the evolution of the Earth's early hydrosphere, Earth Planet. Sci. Lett., 220, 41–55.
  • Iler RK. 1979. Chemistry of silica – solubility, polymerization, colloid and surface properties and biochemistry, New York, John Wiley & Sons.
  • Ilyin AV. 2009. Neoproterozoic banded iron formations, Lith Min. Resour., 44, 78–86.
  • Isley AE. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation, J. Geol., 103, 169–185.
  • Isley AE and Abbott DH. 1999. Plume-related mafic volcanism and the deposition of iron-formation, J. Geophys. Res., 104, B7, 15461–15477.
  • James HL. 1954. Sedimentary facies of iron formation, Econ. Geol., 49, 235–293.
  • James HL. 1969. Comparison between Red Sea deposits and older ironstone and iron-formation, in Hot brines and recent heavy metal deposits in the Red Sea, (ed. Degens E T and Ross D A), 525–532, New York, Springer Verlag.
  • James HL. 1983. Distribution of banded iron-formation in space and time, in Banded iron-formation: facts and problems, (ed. Trendall A F and Morris R C), 471–490, Amsterdam, Elsevier.
  • Kappler A, Pasquero C, Konhauser KO and Newman DK. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe (ll)-oxidizing bacteria, Geology, 33, 865–868.
  • Kasting JF. 1993. Earth’s early atmosphere, Science, 259, 920–926.
  • Kato Y, Suzuki K, Nakamura K, Hickman AH, Nedachi M, Kusukabe M, Bevacqua DC and Ohmoto H. 2009. Haematite formation by oxygenated groundwater more than 2·76 billion years ago, Earth Planet. Sci. Lett., 278, 40–49.
  • Kimberley MM, Tanaka RT and Farr MR. 1980. Composition of Middle Precambrian uraniferous conglomerate in the Elliot Lake - Agnew Lake area of Canada, Precam. Res., 12, 375–392.
  • Klein C and Beukes NJ. 1993. Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada, Econ. Geol., 88, 542–565.
  • Klein C and Ladeira EA. 2004. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected siliceous manganese formations from the Urucum District, Matto Grosso do Sul, Brazil, Econ. Geol., 99, 1233–1244.
  • Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G and Canfield DE. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 1079–1082.
  • Krapez B, Barley ME and Pickard AL. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia, Sedimentology, 50, 979–1011
  • Krautner HG. 1977. Hydrothermal-sedimentary iron ores related to submarine volcanic rises: the Teliuc-Ghelar type as a carbonatic equivalent of the Lahn-Dill type, in Time- and strata-bound ore deposits, (ed. Klem D D and Schneider H J), 232–253, Berlin, Springer Verlag.
  • Kump LR and Holland HD. 1992. Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth, Geochim. Cosmochim. Acta, 56, 3217–3223.
  • La Berge GL. 1973. Possible biological origin of Precambrian iron-formations, Econ. Geol., 68, 1098–1109.
  • Lambert IB. 1976. The MacArthur zinc-lead-silver deposit: features, metallogenesis and comparisons with some other stratiform ores, in Handbook of stratabound and stratiform ore deposits, (ed. Wolf K H), 6, 535–585, Amsterdam, Elsevier.
  • Lascelles DF. 2006. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia, Econ. Geol., 101, 1359–1376.
  • Lascelles DF. 2007. Black smokers and the Archaean environment: a uniformitarian model for the genesis of iron-formations, Ore Geol. Rev., 32, 381–411.
  • Lascelles DF. 2014. Palaeoproterozoic regolith and wave cut erosion surfaces preserved on the northern margin of the Yilgarn Craton, Western Australia. Aust. J. Earth Sci. in press.
  • Lascelles DF and Tsiokos DS. 2014. Microplaty haematite ore in the Yilgarn Province of Western Australia: The geology and genesis of the Wiluna West iron ore deposits, Min. Dep. in review.
  • Law JDM, Phillips GN and Myers RE. 2002. Relevance of the Archaean atmosphere to the genesis of banded iron formations, Proc. Iron Ore 2002, 33–40, Perth, Austral Inst Mining Metall.
  • McCall GJH. 2010. New paradigm for the early Earth: did plate tectonics as we know it not operate until the end of the Archaean? Aust. J. Earth Sci., 57, 349–355.
  • McGuire AV, Dyar MD and Ward KA. 1989. Neglected Fe3+/Fe2+ ratios - A study of Fe3+ content of megacrysts from alkali basalts, Geology, 17, 687–690.
  • Melezhik VA, Fallick AE, Rychanchik DV and Kuznetsov AB. 2005. Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphates, the rise of atmospheric oxygen and local amplification of the δ13C excursion, Terra Nova, 17, 141–148.
  • Millero FJ. 2004. Physicochemical controls on seawater, in Treatise on geochemistry, (ed. Holland H D and Turekian K K), Vol. 6, 1–21, Amsterdam, Elsevier.
  • Mojzsis SJ, Coath CD, Greenwood JP, McKeegan KD and Harrison TM. 2003. Mass-independent isotope effects in Archaean (2·5 to 3·8 Ga) sedimentary sulfides determined by microprobe analysis, Geochim. Cosmochim. Acta, 67, 1635–1658.
  • Moore WB and Webb AG. 2013. Heat-pipe Earth, Nature, 501, 501–505.
  • Morris, RC 1980. A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley Iron Province of Western Australia: Economic Geology, 75: 184–209.
  • Morris RC. 1983. Supergene alteration of banded iron formation, in Iron formation: facts and problems, (ed. Trendall A F and Morris R C), 513–534, Amsterdam, Elsevier Science Publications.
  • Morris RC., 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes - a conceptual model, in Handbook of strata-bound and stratiform ore deposits, (ed. Wolf K H), 13, 73–235, Amsterdam, Elsevier.
  • Morris RC. 1993. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia, in Archaean and early Proterozoic geology of the Pilbara Region, Western Australia, (ed. T. S. Blake and A. Meakins), Precam. Res., 60, 243–286.
  • Morris RC and Horwitz RC. 1983. The origin of the iron-formation-rich Hamersley Group of Western Australia - deposition on a platform, Precam. Res., 21, 273–297.
  • Müller G and Förstner U. 1973. Recent iron ore formation in Lake Malawi, Africa, Min. Dep., 8, 278–290.
  • Ohmoto H. 1993. The banded iron-formations in the Hamersley Basin: products of the oxygen-rich Archaean atmosphere? Ann. Meet. Geol. Soc. Am., Boston, MA, USA, October 1993, Abstracts with Program, A89.
  • Ohmoto H. 2003. Banded iron-formations and the evolution of the atmosphere, hydrosphere, biosphere, and lithosphere, Appl. Earth Sci., Trans. Inst. Min. Metall. B, 112B, B161–162.
  • O’Rourke JE. 1961. Paleozoic banded iron-formations, Econ. Geol., 56, 331–361.
  • Pavlov AA and Kasting JF. 2002. Mass-independent fractionation of sulfur isotopes in Archaean sediments: strong evidence for an anoxic Archaean atmosphere, Astrobiology, 2, 27–41.
  • Pickard AL, Barley ME and Krapez B. 2004. Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia, Sed. Geol., 170, 37–62.
  • Polat A and Frei R. 2005. The origin of early Archaean banded iron formations and of continental crust, Isua, southern West Greenland, Precam. Res., 138, 151–175.
  • Posth NR, Hegler F, Konhauser KO and Kappler A. 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans, Nature Geosci., 1, 703–708.
  • Quade H. 1976. Genetic problems and environmental features of volcano-sedimentary iron-ore deposits of the Lahn-Dill type, in Handbook of strata-bound and stratiform ore deposits, (ed. Wolf K H), 7, 255–294, Amsterdam, Elsevier.
  • Rasmussen B and Buick R. 1999. Redox state of the Archaean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia, Geology, 27, 115–118.
  • Rogers JJW and Santosh M. 2003. Supercontinents in Earth history. Gondwana Res., 6, 357–368.
  • Roscoe SM. 1968. Huronian rocks and uraniferous conglomerates in the Canadian Shield, Geol. Surv. Can. Paper, 68–40.
  • Rye R and Holland HD. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review, Am. J. Sci., 298, 621–672.
  • Severmann S, Mills RA, Palmer MR and Fallick AE., 2004. The origin of clay minerals in active and relict hydrothermal deposits, Geochim. Cosmochim. Acta, 68, 73–88.
  • Seyfried WE and Janecky DR. 1985. Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity, Geochim. Cosmochim. Acta, 49, 2545–2560.
  • Shaw GH. 2008. Earth’s atmosphere – Hadean to early Proterozoic, Chemie der Erde, 68, 235–264.
  • Shipko FJ and Douglas DL. 1956. Stability of ferrous hydroxide precipitates, J. Phys. Chem., 60, 1519–1523.
  • Siebert C, Kramers JD, Meisel T, Morel P and Naegler TF. 2005. PGE, Re-Os and Mo isotope systematics in Archaean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth, Geochim. Cosmochim. Acta, 69, 1787–1801.
  • Siever R. 1957. The silica budget in the sedimentary cycle, Am. Miner., 42, 821–841.
  • Slack JF, Grenne T, Bekker A, Rouxel OJ and Lindberg PA. 2007. Suboxic deep seawater in the late Palaeoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA, Earth Planet. Sci. Lett., 255, 243–256.
  • Stanton RL. 1972. A preliminary account of chemical relationships between sulphide lode and ‘banded iron formation’ at Broken Hill, New South Wales, Econ. Geol., 67, 1128–1145.
  • Stanton RL. 1976. Petrochemical studies of the ore environment at Broken Hill, New South Wales: 1- constitution of ‘banded iron formation’, Trans. Inst. Min. Metall., 85, B33–B46.
  • Sun ZL, Zhou HY, Glasby GP, Sun ZX, Yang QH, Yin XJ and Li JW. 2012. Formation of Fe-Mn-Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin, J. Asian Earth Sci., 43, 64–76.
  • Towe KM. 1983. Precambrian atmospheric oxygen and banded iron formations: a delayed ocean model, Precam. Res., 20, 161–170.
  • Trendall AF and Blockley JG. 1970. The iron formations of the Precambrian Hamersley Group, Western Australia, with special reference to the associated crocidolite: Geol. Surv. West Aust. Bull., 119.
  • Tsikos H, Matthews A, Erel Y and Moore JM. 2010. Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin, Earth Planet. Sci. Lett., 298, 125–134.
  • Tyler IM and Thorne AM. 1990. The northern margin of the Capricorn orogeny, Western Australia – an example of an early Proterozoic collision zone, J. Struct. Geol., 12, 685–701.
  • Veizer J and Jansen SL. 1979. Basement and sedimentary recycling and continental evolution, J. Geol., 87, 341–370.
  • Van den Boom SHJM, van Bergen MJ, Nijman W and Vroon PZ. 2007. Dual role of seawater and hydrothermal fluids in Early Archaean chert formation: Evidence from silicon isotopes, Geology, 35, 939–942.
  • Van Kranendonk MJ, Ivanic TJ, Wingate MTD, Kirkland CL and Wyche S. 2013. Long-lived, autochthonous development of the Archaean Murchison Domain, and implications for Yilgarn Craton tectonics, Precam. Res., 229, 49–92.
  • Wacey D, Kilburn MR, Saunders M, Cliff J and Brasier MD. 2011. Microfossils of sulphur-metabolizing cells in 3·4-billion-year-old rocks of Western Australia, Nature Geosci., 4, 698–702.
  • Watkins KP and Hickman AH. 1990. Geological evolution and mineralization of the Murchison Province, Geol. Surv. West Aust. Bull., 137.
  • Whitten GF. 1970. The investigation and exploitation of the Razorback Ridge iron deposit, Geol. Surv. South Austral Report on Investigations No. 33.
  • Wilkinson BH, McElroy BJ, Kesler SE, Peters SE and Rothman ED. 2009. Global geologic maps are tectonic speedometers—Rates of rock cycling from area-age frequencies, Geol. Surv. Am. Bull., 121, 760–779.
  • Wunsch C. 2010. Towards understanding the palaeocean, Q. Sci. Rev., 29, 1960–1967.
  • Young GM. 1976. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada, Precam. Res., 3, 137–158.
  • Young TP. 1989. Eustatically controlled ooidal ironstone deposition, in Phanerozoic Ironstones, (ed. T. P. Young and W. E. Taylor), Geol. Soc. Spec. Pub., 46, 51–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.