Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 50, 2015 - Issue 7
1,261
Views
27
CrossRef citations to date
0
Altmetric
Review/Critical Assessment

Corrosion informatics: an integrated approach to modelling corrosion

Pages 490-508 | Received 05 May 2014, Accepted 03 Feb 2015, Published online: 04 Mar 2015

References

  • G. H. Koch, M. P. H. Brongers, N. G. Thompson, Y. P. Virmani and J. H. Payer: ‘Corrosion costs and preventive strategies in the United States’; 2002, Houston, TX, NACE International.
  • P. Marcus (ed.): ‘Corrosion mechanics in theory and practice’; 2002, New York, Marcel-Dekker.
  • R. de Borst: ‘Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities’, Comp. Mater. Sci., 2008, 43, 1–15.
  • D. R. Gunasegaram, M. S. Vekatraman and I. S. Cole: ‘Towards multiscale modeling of localised corrosion’, Intl. Mater. Rev., 2014, 59, (2), 84–114.
  • A. Lucia, B. M. Bonk, R. R. Waterman and A. Roy: ‘A multi-scale framework for multi-phase equilibrium flash’, Comput. Chem. Eng., 2012, 36, 79–98.
  • I. Simonovski and L. Cizelj: ‘Computational multiscale modeling of intergranular cracking’, J. Nucl. Mater., 2011, 414, 243–250.
  • M. Baskes, S. Srinivasan, S. Valone and R. Hoagland: ‘Multistate modified embedded atom method’, Phys. Rev. B, 2007, 75, 94113–94128.
  • C. D. Taylor: ‘Connections between the energy functional and interaction potentials for materials simulations’, Phys. Rev. B, 2009, 80, 024104.
  • J. P. Holdren: ‘Materials genome initiative for global competitiveness’; (ed. N.S.a.T. Council), 2011, Washington, D.C, US Office of Science and Technology Policy.
  • Merriam-Webster, ; 2014, Available at: http://www.Merriam-Webster.com, 9 April 2014.
  • A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson and G. Ceder: ‘A high throughput infrastructure for density functional theory calculations’, Comp. Mat., 2011, 50, (8), 2295–2310.
  • S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder: ‘Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis’, Comp. Mater. Sci., 2013, 68, 314–319.
  • K. Rajan: ‘Materials informatics’, Mater. Today, 2005, 8, 38–45.
  • Anon.: ‘Multicorp: Multiphase flow and corrosion prediction software package 4.2’, 50 edn; 2007, Athens, OH, Ohio University.
  • S. Nesic, H. Li, J. Huang and D. Sormaz: ‘An open source mechanistic model for CO2/H2S corrosion of carbon steel’, Corrosion 2009 Conference, Atlanta, GA; 2009, NACE International. 09572.
  • P. Murray-Rust and D. Murray-Rust: ‘Reproducible physical science and the declaratron’, in ‘Implementing reproducible research’, (ed. V. Stodden., 113–145; 2014, Boca Raton, FL, CRC Press.
  • B. Saassouh and Z. Lounis: ‘Probabilistic modeling of chloride-induced corrosion in concrete structures using first- and second-order reliability methods’, Cem. Concr. Compos., 2012, 34, 1082–1093.
  • H. O. Madsen, S. Krenk and N. C. Lind: ‘Methods of structural safety’; 2006, Mineola, NY, Dover Publications, Inc..
  • W. R. Gilks, S. Richardson and D. J. Spiegelhalter: ‘Markov chain Monte Carlo in practice’; 1996, London, UK, Chapman & Hall.
  • A. Strachan, S. Mahadevan, V. Hombal and L. Sun: ‘Functional derivatives for uncertainty quantification and error estimation and reduction via optimal high-fidelity simulations’, Model. Simul. Mater. Sci. Eng., 2013, 21, 65009–65028.
  • S. Kaplan and B. J. Garrick: ‘On the quantitative definition of risk’, Risk Anal., 1981, 1, (1), 11–27.
  • D. E. J. Armstrong, M. E. Rogers and S. G. Roberts: ‘Micromechanical testing of stress corrosion cracking of individual grain boundaries’, Scripta Mat., 2009, 61, 741–743.
  • V. Y. Gertsmann and S. M. Bruemmer: ‘Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys’, Acta Mat., 2001, 49, 1589–1598.
  • A. King, G. Johnson, D. Engelberg, W. Ludwig and J. Marrow: ‘Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal’, Science, 2008, 321, 382–385.
  • E. M. Lehockey, A. M. Brennenstuhl and I. Thompson: ‘On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking’, Corr. Sci., 2004, 46, 2383–2404.
  • A. Musienko and G. Cailletaud: ‘Simulation of inter- and transgranular crack propagatoin in polycrystalline aggregates due to stress corrosion cracking’, Acta Mater., 2009, 57, 3840–3855.
  • D. N. Wasnik, V. Kain, I. Samajdar, B. Verlinden and P. K. De: ‘Controlling grain boundary energy to make austenitic stainless steels resistant to intergranular stress corrosion cracking’, J. Mat. Eng. Perf., 2003, 12, 402–407.
  • G. Engelhardt and D. D. Macdonald: ‘Unification of the deterministic and statistical approaches for predicting localized corrosion damage. I. Theoretical foundation’, Corrosion Sci., 2004, 46, 2755–2780.
  • J. K. Paik and D. K. Kim: ‘Advanced method for the development of an empirical model to predict time-dependent corrosion wastage’, Corrosion Sci., 2012, 63, 51–58.
  • N. Oreskes, K. Shrader-Frechette and K. Belitz: ‘Verification, validation and confirmation of numerical models in the earth sciences’, Science, 1994, 263, 641–646.
  • A. Traidia, M. Alfano, G. Lubineau, S. Duval and A. Sherik: ‘An effective finite element model for the prediction of hydrogen induced cracking in steel pipelines’, Int. J. Hydrogen Energy, 2012, 37, 16214–16230.
  • G. Lu, Q. Zhang, N. Kioussis and E. Kaxiras: ‘Hydrogen-enhanced local plasticity in aluminum: an ab initio study’, Phys. Rev. Lett., 2001, 87, 95501–95504.
  • J. Postlethwaite, S. Nesic, G. Adamopoulos and D. J. Bergstrom: ‘Predictive models for erosion-corrosion under disturbed flow conditions’, Corr. Sci., 1993, 35, 627–633.
  • X. Tang, S. Richter and S. Nesic: ‘An improved model for water wetting prediction in oil-water two-phase flow’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2393.
  • A. Peratta and R. Adey: ‘Modeling Galvanic corrosion in multi-material aircraft structures’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2456.
  • R. S. Lillard, G. F. Wang and M. I. Baskes: ‘The role of metallic bonding in the crystallographic pitting of magnesium’, J. Electrochem. Soc., 2006, B358 153.
  • D. D. Macdonald: ‘The history of the point defect model for the passive state: a brief review of film growth aspects’, Electrochim. Acta, 2011, 56, 1761–1772.
  • B. P. Uberuaga, D. A. Andersson and C. R. Stanek: ‘Defect behavior in oxides: insights from modern atomistic simulation methods’, Curr. Opin. Solid State Mater. Sci., 2013, 17, 249–256.
  • M. A. Arafin and J. A. Szpunar: ‘A novel microstructure-grain boundary character based integrated modeling approach of intergranular stress corrosion crack propagation in polycrystalline materials’, Comp. Mater. Sci., 2010, 47, 890–900.
  • R. Spatschek, E. Brener and A. Karma: ‘Phase field modeling of crack propagation’, Philos. Mag., 2011, 91, (1), 75–95.
  • C. A. Walton, M. F. Horstemeyer, H. J. Martin and D. K. Francis: ‘Formulation of a macroscale corrosion damage internal state variable model’, Int. J. Solids Struct., 2014, 51, 1235–1245.
  • B. Beverskog and I. Puigdomenech: ‘Revised Pourbaix diagrams for iron at 25-300C’, Corr. Sci., 1996, 38, (12), 2121–2135.
  • E. Deltombe, N. de Zoubov and M. Pourbaix: ‘Atlas of electrochemical equilibria in aqueous solution’; 1974, Houston, Texas, NACE.
  • E. Protopopoff and P. Marcus: ‘Potential versus pH (Pourbaix) diagrams’, in ‘Corrosion: fundamentals, testing and protection’, (ed. B. S. Corvino Jr. and S. D. Cramer), 17–30; 2003, OH, ASM International.
  • A. Anderko and P. J. Shuler: ‘A computational approach to predicting the formation of iron sulfide species using stability diagrams’, Comp. Geosci., 1997, 23, (6), 647–658.
  • A. Anderko, N. Sridhar, M. A. Jakab and G. Tormoen: ‘A general model for the repassivation potential as a function of multiple aqueous species. 2.Effect of oxyanions on localized corrosion of Fe-Ni-Cr-Mo-W-N alloys’, Corrosion Sci., 2008, 50, 3629–3647.
  • G. Gece: ‘The use of quantum chemical methods in corrosion inhibitor studies’, Corrosion Sci., 2008, 50, 2981–2992.
  • K. F. Khaled: ‘Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles’, Electrochim. Acta, 2008, 53, 3484–3492.
  • R. D. Johnson III, K. K. Irikura, R. N. Kacker and R. Kessel: ‘Scaling factors and uncertainties for ab initio anharmonic vibrational frequencies’, J. Chem. Theory Comput., 2010, 6, 2822–2828.
  • S. J. Fensin, D. Olmsted, D. Buta, M. Asta, A. Karma and J. J. Hoyt: ‘Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations’, Phys. Rev. B, 2010, 81, 031601.
  • N. K. Das, K. Suzuki, Y. Takeda, K. Ogawa and T. Shoji: ‘Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe-Cr surfaces’, Corr. Sci., 2008, 50, 1701–1706.
  • B. Diawara, M. Legrand, J. J. Legendre and P. Marcus: ‘Use of quantum chemistry results in 3D modeling of corrosion of iron-chromium alloys’, J. Electrochem. Soc., 2004, 151, (3), B172.
  • C. D. Taylor, T. Lookman and R. S. Lillard: ‘Ab initio calculations of the uranium-hydrogen system: thermodynamics, hydrogen saturation of α-U and phase transformation to UH3’, Acta Mater., 2010, 58, 1045–1055.
  • X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi and B. P. Uberuaga: ‘Efficient annealing of radiation damage near grain boundaries via interstitial emission’, Science, 2010, 327, (5973), 1631–1634.
  • Y. Wang and J. Li: ‘Phase field modeling of defects and deformation’, Acta Mater., 2010, 58, 1212–1235.
  • G. B. Olson: ‘Genomic materials design: the ferrous frontier’, Acta Mater., 2013, 61, 771–781.
  • P. J. Spencer: ‘A brief history of CALPHAD’, Calphad, 2008, 32, 1–8.
  • J. R. Rice and J. -S. Wang: Mater. Sci. Eng., 1989, A107, 23–40.
  • M. F. Ashby: ‘Materials selection in engineering design’; 2011, Burlington, MA, Butterworth-Heinemann.
  • J. -C. Charpentier: ‘The triplet “molecular processes-product-process” engineering: the future of chemical engineering?’, Chem. Eng. Sci., 2002, 57, 4667–4690.
  • J. -C. Charpentier: ‘Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering’, Chem. Eng. Res. Des., 2010, 88, 248–254.
  • A. Lewis, N. Kazantzis, I. Fishtik and J. Wilcox: ‘Integrating process safety with molecular modeling-based risk assessment of chemicals within the REACH regulatory framework: benefits and future challenges’, J. Hazard. Mater., 2007, 142, 592–602.
  • E. J. Tuegel, A. R. Ingraffea, T. G. Eason and S. M. Spottswood: ‘Reengineering aircraft structural life prediction using a digital twin’, Int. J. Aerospace Eng., 2011, 2011, 154798.
  • E. H. Glaessgen and D. S. Stargel: ‘The digital twin paradigm for future NASA and US Air Force vehicles’, 53rd Structures, Structural Dynamics and Materials Conference; 2012, American Institute of Aeronautics and Astronautics.
  • F. Ayello, N. Sridhar, G. Koch, V. Khare, A. W. Al-Mathen and S. Safri: ‘Internal Corrosion Threat Assessment of Pipelines using Bayesian Networks’, Corrosion 2014 Conference, San Antonio, TX; 2014, NACE International. 3851.
  • S. Jain, F. Ayello, J. A. Beavers and N. Sridhar: ‘Probabilistic model for stress corrosion cracking of underground pipelines using Bayesian networks’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2616.
  • G. Koch, F. Ayello, V. Khare, N. Sridhar and A. Moosavi: ‘Corrosion threat assessment of crude oil flow lines using a Bayesian Network Model’, International Pipeline Conference, Calgary, Alberta, Canada; 2014, ASME. 3041.
  • J. Rossmeisl, J. K. Nørskov, C. D. Taylor and M. Neurock: ‘Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111)’, J. Phys. Chem. B, 2006, 110, 21833.
  • A. B. Anderson and N. C. Debnath: ‘Mechanism of iron dissolution and passivation in an aqueous environment: active and transition ranges’, J. Am. Chem. Soc., 1983, 105, 18–22.
  • A. B. Anderson and N. K. Ray: ‘Structures and reactions of H3O+, H2O and OH on an Fe electrode. Potential dependence’, J. Phys. Chem., 1982, 86, 488–494.
  • C. D. Taylor, R. G. Kelly and M. Neurock: ‘First-principles calculations of the electrochemical reactions of water at an immersed Ni(111)/H2O interface’, J. Electrochem. Soc., 2006, 153, E207–E214.
  • C. D. Taylor, R. G. Kelly and M. Neurock: ‘First-principles prediction of equilibrium potentials for water activation by a series of metals’, J. Electrochem. Soc., 2007, 154, F217–F221.
  • C. D. Taylor, R. G. Kelly and M. Neurock: ‘A first-principles analysis of the chemisorption of hydroxide on copper under electrochemical conditions: a probe of the electronic interactions that control chemisorption at the electrochemical interface’, J. Electroanal. Chem, 2007, 607, 167–174.
  • C. D. Taylor and M. Neurock: ‘Theoretical insights into the structure and reactivity of the aqueous/metal interface’, Curr. Opin. Solid State Mat. Sci., 2006, 2006, 9.
  • C. D. Taylor, S. A. Wasileski, J. W. Fanjoy, J. -S. Filhol and M. Neurock: ‘First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure’, Phys. Rev. B., 2006, 73, 165402–165417.
  • C. Taylor, M. Neurock and J. Scully: ‘First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces’, J. Electrochem. Soc., 2008, 155, C407–C414.
  • C. D. Taylor: ‘The transition from metal-metal bonding to metal-solvent interactions during a dissolution event as assessed from electronic structure’, Chem. Phys. Lett., 2009, 469, 99–103.
  • C. D. Taylor: ‘Cohesive relations for surface atoms in the iron-technetium binary system’, J. Metallurgy, 2011, 2011, 954170.
  • S. K. R. S. Sankaranarayanan and S. Ramanathan: ‘Low temperature oxidation and ultrathin oxide growth on zirconium in the presence of atomic oxygen: a modeling study’, J. Phys. Chem. C, 2008, 112, 17877–17882.
  • B. Jeon, S. K. R. S. Sankaranarayanan, A. C. T. van Duin and S. Ramanathan: ‘Atomistic insights into aqueous corrosion of copper’, J. Chem. Phys., 2011, 134, 234706.
  • S. A. Deshmukh and S. K. R. S. Sankaranarayanan: ‘Atomic scale characterization of interfacial water near an oxide surface using molecular dynamics simulations’, Phys. Chem. Chem. Phys., 2012, 14, 15593–15605.
  • A. Grossfield and D. M. Zuckerman: ‘Quantifying uncertainty and sampling quality in biomolecular simulations’, Annu. Rep. Comput. Chem., 2009, 5, 23–48.
  • S. A. Policastro, J. C. Carnahan, G. Zangari, H. Bart-Smith, E. Seker, M. R. Begley, M. L. Reed, P. F. Reynolds and R. G. Kelly: ‘Surface diffusion and dissolution kinetics in the electrolyte-metal interface’, J. Electrochem. Soc., 2010, 157, (10), C328–C337.
  • C. D. Taylor and X. -Y. Liu: ‘Investigation of structure and composition control over active dissolution of Fe-Tc binary metallic waste forms by off-lattice kinetic Monte Carlo simulations’, J. Nuc. Mat., 2013, 434, 382–388.
  • R. S. Lillard: ‘Relationships between metal-metal bonding and crystallographic pitting in hcp metals’, Electrochem. Solid State Lett., 2003, 6, B29–B31.
  • J. Erlebacher: ‘An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behavior’, J. Electrochem. Soc., 2004, 151, C614–C626.
  • O. Magnussen, W. Polewska, L. Zitzler and R. J. Behm: ‘In situ video STM studies of dynamic processes at electrochemical interfaces’, Faraday Discuss., 2002, 121, 43–52.
  • K. Potting, N. B. Luque, P. M. Quaino, H. Ibach and W. Schmickler: Electrochim. Acta, 2009, 54, 4494.
  • M. Mesgar, P. Kaghazchi, T. Jacob, E. Pichardo-Pedrero, M. Giesen, H. Ibach, N. B. Luque and W. Schmickler: ‘Chlorine-enhanced surface mobility of Au(100)’, Chem. Phys. Chem., 2012, 14, 233–236.
  • X. Crispin, V. M. Geskin, C. Bureau, R. Lazzaroni, W. Schmickler and J. L. Bredas: ‘A density functional model for tuning the charge transfer between a transition metal electrode and a chemisorbed molecule via the electrode potential’, J. Chem. Phys., 2001, 115, (22), 10493–10499.
  • J. Grimminger, S. Bartenschlager and W. Schmickler: ‘A model for combined electron and proton transfer in electrochemical systems’, Chem. Phys. Lett., 2005, 416, 316–320.
  • O. Pecina and W. Schmickler: ‘A model for electrochemical proton-transfer reactions’, Chem. Phys., 1998, 228, 265–277.
  • O. Pecina, W. Schmickler and E. Spohr: ‘On the mechanism of electrochemical ion transfer reactions’, J. Electroanal. Chem., 1995, 394, 29–34.
  • E. Santos, A. Lundin, K. Potting, P. M. Quaino and W. Schmickler: Phys. Rev. B, 2009, 79, 235436.
  • E. Santos, A. Lundin, K. Potting, P. M. Quaino and W. Schmickler: J. Solid State Electrochem., 2009, 13, 1101.
  • E. Santos, K. Potting and W. Schmickler: Faraday Discuss., 2009, 140, 209.
  • V. G. Levich: ‘Kinetics of reactions with charge transfer’, in ‘Physical chemistry, an advanced treatise’, (ed. H. Eyring); 1970, New York, Academic Press.
  • E. Santos and W. Schmickler: Angew. Chem. Int. Ed., 2007, 46, 8262.
  • W. Schmickler: Electrochim. Acta, 1996, 41, 2329.
  • L. M. C. Pinto, E. Spohr, P. M. Quaino, E. Santos and W. Schmickler: ‘Why silver deposition is so fast: solving the enigma of metal deposition’, Angew. Chem. Int. Ed., 2013, 52, 7883–7885.
  • A. Rose and K. Legg: ‘Predicting corrosion in military aircraft’, Mater. Perform., 2014, 53, 58–60.
  • E. Gileadi: ‘Can an electrode reaction occur without electron transfer across the metal/solution interface?’, Chem. Phys. Lett., 2004, 393, 421–424.
  • H. H. Uhlig: ‘Corrosion and corrosion control’; 1971, New York, John Wiley & Sons, Inc..
  • O. Olatunji-Ojo and C. D. Taylor: ‘Changes in valence, coordination and reactivity that occur upon oxidation of fresh metal surfaces’, Philos. Mag., 2013, 93, 4286–4310.
  • M. F. Francis and C. D. Taylor: ‘First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: oxygen chemisorption to Mg(0001) and thermodynamic stability’, Phys. Rev. B, 2013, 87, 75450.
  • E. F. Holby, J. Greeley and D. Morgan: ‘Thermodynamics and hysteresis of oxide formation and removal on platinum (111) surfaces’, J. Phys. Chem. C, 2012, 116, 9942–9946.
  • T. J. Campbell, G. Aral, S. Ogata, R. K. Kalia, A. Nakano and P. Vashishta: ‘Oxidation of aluminum nanoclusters’, Phys. Rev. B, 2005, 71, 205413–205426.
  • R. Subbaraman, S. A. Deshmukh and S. K. R. S. Sankaranarayanan: ‘Atomistic insights into early stage oxidation and nanoscale oxide growth on Fe(100), Fe(111) and Fe(110) surfaces’, J. Phys. Chem. C, 2013, 117, 5195–5207.
  • A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard III: ‘ReaxFF: a reactive force field for hydrocarbons’, J. Phys. Chem. A, 2001, 105, 9396–9409.
  • F. Streitz and J. Mintmire: ‘Electrostatic potentials for metal-oxide surfaces and interfaces’, Phys. Rev. B, 1994, 50, 11996–12003.
  • D. di Caprio and J. Stafiej: ‘The role of adsorption in passivation phenomena modeled by discrete lattice gas automata’, Electrochim. Acta, 2011, 56, 3963–3968.
  • P. Van der Weeen, A. M. Zimer, E. C. Pereira, L. H. Mascaro, O. M. Bruno and B. De Baets: ‘Modeling pitting corrosion by means of a 3D discrete stochastic model’, Corr. Sci., 2014, 82, 133–144.
  • D. Di Caprio, C. Vautrin-Ul, J. Stafiej, J. Saunier, A. Chausse, D. Feron and J. P. Badiali: ‘Morphology of corroded surfaces: contribution of cellular automaton modeling’, Corr. Sci., 2011, 53, 418–425.
  • K. N. Nigussa, K. L. Nielsen, O. Borck and J. A. Stovneng: ‘Adsorption of hydrogen, chlorine, and sulfur atoms on alpha-Cr2O3(0001) surfaces: a density functional theory investigation’, Corrosion Sci., 2011, 53, 3612–3622.
  • N. Pineau, C. Minot, V. Maurice and P. Marcus: ‘Density functional theory study of the interaction of Cl- with passivated nickel surfaces’, Electrochem. Solid-State Lett., 2003, 6, (11), B47–B51.
  • A. Bouzoubaa, D. Costa, B. Diawara and P. Marcus: ‘Insight of DFT and atomistic thermodynamics on the adsorption and insertion of halides onto the hydroxylated NiO(111) surface’, Corr. Sci., 2010, 52, 2643.
  • A. Anderko, F. Gui, L. Cao and N. Sridhar: ‘Modeling localized corrosion of corrosion-resistant alloys in oil and gas production environments’, Corrosion 2014 Conference, San Antonio, TX; 2014, NACE International, TBD.
  • C. D. Taylor: ‘Predictions of surface electrochemistry of saturated and alkaline NH4Cl solutions interacting with Fe(110) from ab initio calculations’, Corrosion, 2012, 68, 591–599.
  • N. Sridhar, D. S. Dunn and M. Seth: ‘Application of a general reactive transport model to predict environment under disbonded coatings’, Corrosion, 2001, 57, 598–613.
  • C. Lu, J. Samper, B. Fritz, A. Clement and L. Montenegro: ‘Interactions of corrosion products and bentonite: an extended multicomponent reactive transport model’, Phys. Chem. Earth, 2011, 36, 1661–1668.
  • L. Wu, Z. Qin and D. W. Shoesmith: ‘An improved model for the corrosion of used nuclear fuel inside a failed waste container under permanent disposal conditions’, Corr. Sci., 2014, 84, 85–95.
  • B. Tribollet, J. Kittel, A. Meroufel, F. Ropital, F. Grosjean and E. M. M. Sutter: ‘Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 2: model of the cathodic reactions on a 316 L stainless steel rotation disc electrode’, Electrochim. Acta, 2014, 124, 46–51.
  • H. -Y. Chang, Y. -S. Park and W. -S. Hwang: ‘Initiation modeling of crevice corrosion in 316 L stainless steels’, J. Mater. Proc. Tech., 2000, 103, 206–217.
  • J. R. Rustad, B. P. Hay and J. W. Halley: ‘Molecular dynamics simulation of iron(III) and its hydrolysis products in aqueous solution’, J. Chem. Phys., 1995, 102, 427.
  • J. Ozbolt, G. Balabanic and M. Kuster: ‘3D numerical modeling of steel corrosion in concrete structures’, Corrosion Sci., 2011, 53, 4166–4177.
  • J. Ozbolt, G. Balbanic, G. Periskic and M. Kuster: ‘Modelling the effect of damage on transport processes in concrete’, Constr. Build. Mater., 2010, 24, 1638–1648.
  • K. Yaya, Y. Khelfaoui, B. Malki and M. Kerkar: ‘Numerical simulations study of the localized corrosion resistance of AISI 316 L stainless steel and pure titanium in a simulated body fluid environment’, Corr. Sci., 2011, 53, 3309–3314.
  • R. W. Staehle: ‘Predicting failures in light water nuclear reactor which have not yet been observed – microprocess sequence approach (MPSA)’, 2nd International Conference on Environment-Induced Cracking of Metals EICM-2, The Banff Center, Calgary, Alberta, Canada, Sept 19–23; 2004.
  • T. E. Graedel: ‘GILDES model studies of aqueous chemistry. I. Formulation and potential applications of the multi-regime model’, Corr. Sci., 1996, 38, 2153–2180.
  • L. A. Farrow, T. E. Graedel and C. Leygraf: ‘GILDES model studies of aqueous chemistry. II. The corrosion of zinc in gaseous exposure chambers’, Corr. Sci., 1996, 38, 2181–2199.
  • L. Xu and Y. F. Cheng: ‘A direct assessment of failure pressure of high-strength steel pipelines with considerations of the synergism of corrosion defects, internal pressure and soil strain’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2063.
  • U. Arumugam, M. Gao, R. Wang, R. Kania and D. C. Katz: ‘Application of plastic strain damage models to characterize dent with crack’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2858.
  • M. F. Horstemeyer and D. J. Bammann: ‘Historical review of internal state variable theory for inelasticity’, Int. J. Plasticity, 2010, 26, 1310–1334.
  • A. Van der Ven and G. Ceder: ‘The thermodynamics of decohesion’, Acta Mater, 2006, 52, 1223–1235.
  • V. Uthaisangsuk, U. Prahl and W. Bleck: ‘Micromechanical modeling of damage behaviour of multiphase steels’, Comp. Mater. Sci., 2008, 43, 27–35.
  • R. P. Case, H. E. Rincon, D. R. McIntyre and S. R. Hernandez: ‘Pit metastability and stress corrosion cracking susceptibility assessment of austenitic stainless steels in sour gas service conditions’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2235.
  • W. A. Curtin and R. E. Miller: ‘Atomistic/continuum coupling in computational materials science’, Modelling Simul. Mater. Sci. Eng., 2003, 11, R33–R68.
  • D. W. Brenner: ‘Challenges to marrying atomic and continuum modeling of materials’, Curr. Opin. Solid State Mater. Sci., 2013, 17, 257–262.
  • Y. U. Wang, Y. M. Jin and A. G. Khachaturyan: ‘Mesoscale modeling of mobile crystal defects-dislocations, cracks and surface roughening: phase field microelasticity approach’, Phil. Mag., 2005, 85, 261–277.
  • N. Zhou, C. Shen, M. J. Mills and Y. Wang: ‘Phase field modeling of channel dislocation activity and y’ rafting in single crystal Ni-Al’, Acta Mat., 2007, 55, 5369–5381.
  • K. R. Elder, M. Katakowski, M. Haataja and M. Grant: ‘Modeling elasticity in crystal growth’, Phys. Rev. Lett., 2002, 88, 245701.
  • Y. -H. Wen, L. -Q. Chen and J. A. Hawk: ‘Phase-field modeling of corrosion kinetics under dual oxidants’, Model. Sim. Matls. Sci. Eng., 2012, 20, 035013.
  • G. Lu, D. Orlikowski, I. Park, O. Politano and E. Kaxiras: ‘Energetics of hydrogen impurities in aluminum and their effect on mechanical properties’, Phys. Rev. B, 2002, 65, 64102–64109.
  • G. Lu and E. Kaxiras: ‘Hydrogen embrittlement of aluminum: the crucial role of vacancies’, Phys. Rev. Lett., 2005, 94, 155501–155504.
  • S. Serebrinsky, E. A. Carter and M. Ortiz: ‘A quantum-mechanically informed continuum model of hydrogen embrittlement’, J. Mech. Phys. Sol., 2004, 52, 2403–2430.
  • A. Juan and R. Hoffmann: ‘Hydrogen on the Fe(110) surface and near bulk bcc Fe vacancies – a comparative bonding study’, Surf. Sci., 1999, 421, (1–2), 1–16.
  • C. D. Taylor, R. G. Kelly and M. Neurock: ‘Theoretical analysis of the nature of hydrogen at the electrochemical interface between water and a Ni(111) single-crystal electrode’, Electrochem. Soc., 2007, 154, (3), F55–F64.
  • C. D. Taylor, M. Neurock and J. R. Scully: ‘A first-principles model for hydrogen uptake promoted by sulfur on Ni(111)’, J. Electrochem. Soc., 2011, 158, (3), F36–F44.
  • I. S. Cole and A. E. Hughes: ‘Designing molecular protection: new paradigm for developing corrosion resistant materials uniting high throughput studies, multiscale modelling and self-repair’, Corr. Eng. Sci. Tech., 2014, 49, (2), 109–115.
  • A. B. Richon: ‘Current status and future direction of the molecular modeling industry’, Drug Discov. Today, 2008, 13, 665–669.
  • F. A. Quintero, S. J. Patel, F. Munoz and M. S. Mannan: ‘Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system’, Ind. Eng. Chem. Res., 2012, 51, 16101–16115.
  • J. Vosta and J. Eliasek: ‘Study on corrosion inhibition from aspect of quantum chemistry’, Corr. Sci., 1971, 11, 223–229.
  • W. Durnie, R. De Marco, B. Kinsella, A. Jefferson and B. Pejcic: ‘Predicting the adsorption properties of carbon dioxide corrosion inhibitors using a structure-activity relationship’, J. Electrochem. Soc., 2005, 152, (1), B1–B11.
  • P. R. Vijayalakshmi and R. Rajalakshmi: ‘Inhibition of mild steel corrosion using aqueous extract of Cocos nucifera L. Peduncle in acidic solutions and their adsorption characteristics’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2303.
  • L. C. Murulana, A. K. Singh, S. K. Shukla, M. M. Kabanda and E. E. Ebenso: ‘Experimental and quantum chemical studies of some Bis(trifluoromethyl-sulfonyl) imide imidazolium-based ionic liquids as corrosion inhibitors for mild steel in hydrochloric acid solution’, Ind. Eng. Chem. Res., 2012, 51, 13282–13299.
  • E. E. Ebenso, M. M. Kabanda, L. C. Murulana, A. K. Singh and S. K. Shukla: ‘Electrochemical and quantum chemical investigation of some azine and thiazine dyes as potential corrosion inhibitors for mild steel in hydrochloric acid solution’, Ind. Eng. Chem. Res., 2012, 51, 12940–12958.
  • M. Gholami, I. Danaee, M. H. Maddahy and M. RashvandAvei: ‘Correlated ab initio and electroanalytical study on inhibition behavior of 2-mercaptobenzothiazole and its thiole-thione tautomerism effect for the corrosion of steel (API 5 L X52) in sulphuric acid solution’, Ind. Eng. Chem. Res., 2013, 52, 14875–14889.
  • W. Durnie, R. De Marco, A. Jefferson and B. Kinsella: ‘Development of a structure-activity relationship for oil field corrosion inhibitors’, J. Electrochem. Soc., 1999, 146, (5), 1751–1756.
  • K. Sayin and D. Karakas: ‘Quantum chemical studieson the some inorganic corrosion inhibitors’, Corrosion Sci., 2013, 77, 37–45.
  • T. Ghailane, R. A. Balkhmima, R. Ghailane, A. Souizi, R. Touir, M. Ebn Touhami, K. Marakchi and N. Komiha: ‘Experimental and theoretical studies for mild steel corrosion inhibition in 1 M HCl by two new benziothiazine derivatives’, Corr. Sci., 2013, 76, 317–324.
  • M. Ozcan, D. Toffoli, H. Ustunel and I. Dehri: ‘Insights into surface-adsorbate interactions in corrosion inhibition processes at the molecular level’, Corrosion Sci., 2014, 80, 482–486.
  • K. F. Khaled: ‘Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulphuric acid by some green corrosion inhibitors’, J. Solid State Electrochem., 2009, 13, 1743–1756.
  • D. -S. Kong, S. -L. Yuan, Y. -X. Sun and Z. -Y. Yu: ‘Self-assembled Monolayer of o-aminothiophenol on Fe(110) surface: a combined study by electrochemistry, in situ STM, and molecular simulations’, Surf. Sci, 2004, 573, 272–283.
  • L. Feng, H. Yang and F. Wang: ‘Experimental and theoretical Studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution’, Electrochim. Acta, 2011, 58, 427–436.
  • S. Satoh and H. Fujimoto: ‘Theoretical study of medium-sized azacycloalkane and dialkyl amine adsorption on the Fe(111) surface’, Ind. Eng. Chem. Res., 2011, 50, 7313–7318.
  • S. Satoh, H. Fujimoto and H. Kobayashi: ‘Theoretical study of NH3 adsorption on Fe(110) and Fe(111) Surfaces’, J. Phys. Chem. B, 2006, 110, 4846–4852.
  • R. S. Oguike, A. M. Kolo, A. M. Shibdawa and H. A. Gyenna: ‘Density functional theory of mild steel corrosion in acidic media using dyes as inhibitor: adsorption onto Fe(110) from gas phase’, ISRN Phys. Chem., 2013, 2013, 175910.
  • A. Kokalj, S. Peljhan, M. Finsgar and I. Milosev: ‘What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper?’, J. Am. Chem. Soc., 2010, 132, 16657–16668.
  • A. Edwards, C. Osborne, S. Webster, D. Klenerman, M. Joseph, P. Ostovar and M. Doyle: ‘Mechanistic studies of the corrosion inhibitor oleic imidazoline’, Corr. Sci., 1994, 36, (2), 315–325.
  • C. Li, S. Richter and S. Nesic: ‘How do inhibitors mitigate corrosion in oil-water two phase flow beyond lowering the corrosion rate?’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2391.
  • S. Ramachandran, K. Miner, M. Greaves, J. Thomas and V. Jovancicevic: ‘Optimizing the treatment of low flow pipelines using a time-released product with the use of residence time distribution models’, Corrosion 2010 Conference, San Antonio, TX; 2010, NACE International. 10328.
  • S. Papavinasam: ‘Mitigation – internal corrosion, in Corrosion control in the oil and gas industry’, 374–399; 2014, London, Elsevier.
  • P. Marcassoli, A. Bonetti, L. Lazzari and M. Ormellese: ‘Modeling of potential distribution of subsea pipeline under cathodic protection by finite element method’, Corrosion 2013 Conference, Orlando, FL; 2013, NACE International. 2333.
  • S. R. Cross, R. Woollam, S. Shademan and C. A. Schuh: ‘Computational design and optimization of multilayered and functionally graded corrosion coatings’, Corrosion Sci., 2013, 77, 297–307.
  • T. Weymuth and M. Reiher: ‘Inverse quantum chemistry: concepts and strategies for rational compound design’, Int. J. Quant. Chem, 2014, 114, 823–837.
  • D. G. Harlow and R. P. Wei: ‘Probability modeling and material microstructure applied to corrosion and fatigue of aluminum and steel alloys’, Eng. Fract. Mech., 2009, 76, 695–708.
  • F. Jensen: ‘The basis set convergence of the Hartree-Fock energy for H2’, J. Chem. Phys., 1999, 110, 6601–6605.
  • F. Jensen: ‘Polarization consistent basis sets: principles’, J. Chem. Phys., 2001, 115, 9113–9125.
  • F. Jensen: ‘Polarization consistent basis sets. II. Estimating the Kohn-Sham basis set limit’, J. Chem. Phys., 2002, 116, 7372–7379.
  • F. Jensen: ‘Polarization consistent basis sets. III. The importance of diffuse functions’, J. Chem. Phys., 2002, 117, 9234–9240.
  • F. Jensen: ‘Polarization consistent basis sets. IV. The basis set convergence of equilibrium geometries, harmonic vibrational frequencies, and intensities’, J. Chem. Phys., 2003, 118, 2459–2463.
  • F. Jensen: ‘The effect of different density functional methods on basis set parameters’, Chem. Phys. Lett., 2005, 402, 510–513.
  • F. Jensen and T. Helgaker: ‘Polarization consistent basis sets. V. The elements Si-Cl’, J. Chem. Phys., 2004, 121, 3463–3470.
  • F. Ciucci, T. Carraro, W. C. Chueh and W. Lai: ‘Reducing error and measurement time in impedance spectroscopy using model based optimal experimental design’, Electrochim. Acta, 2011, 56, 5416–5434.
  • E. P. Benedictis: ‘Reversible logic in supercomputing’, Proc. 2nd Conf. Comp. Frontiers, Ischia, Italy, May, 2005, ACM, NY, 391–402.
  • I. S. Cole and D. Marney: ‘The science of pipe corrosion: a review of the literature on the corrosion of ferrous metals in soils’, Corr. Sci., 2012, 56, 5–16.
  • N. N. Taleb: ‘The Black Swan: the impact of the highly improbable’; 2007, New York, NY, Random House.
  • J. A. Warren: ‘The Materials Genome Inititative at NIST’, 2013, [viewed April 21, 2014], available at: http://www.nist.gov/mgi/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.