Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 51, 2016 - Issue 2
288
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Characterisation of corrosion properties of Ti–Nb–Cu alloy foam by electrochemical impedance spectroscopy method

, &
Pages 110-117 | Received 31 Jan 2015, Accepted 06 Jun 2015, Published online: 29 Apr 2016

References

  • Ashby M. F., Evans A. G., Fleck N. A., Gibson L. J., Hutchinson J. W. and Wadley H. N. G.: ‘Metal foams: a design guide’, 2000, Boston, MA, Elsevier Science.
  • Gibson L. J. and Ashby M. F.: ‘Cellular solids—structures and properties’, 2nd edn; 1997, Cambridge, UK, Cambridge University Press.
  • Wenjuan N., Chenguang B., GuiBao Q. and Qiang W.: ‘Processing and properties of porous titanium using space holder technique’. Mater. Sci. Eng. A, 2009, A506, 148–151.
  • Mutlu I. and Oktay E.: ‘Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva’. Mater. Sci. Eng. C, 2013, C33, 1125–1131. doi: 10.1016/j.msec.2012.12.004
  • Gibson L. J.: ‘Biomechanics of cellular solids’, J. Biomech., 2005, 38, 377–399. doi: 10.1016/j.jbiomech.2004.09.027
  • Lin J. G., Li Y. C., Wong C. S., Hodgson P. D. and Wen C. E.: ‘Degradation of the strength of porous titanium after alkali and heat treatment’. J. Alloys Compd., 2009, 485, 316–319. doi: 10.1016/j.jallcom.2009.05.048
  • Huang J., Xing H. and Sun J.: ‘Structural stability and generalized stacking fault energies in β Ti–Nb alloys: Relation to dislocation properties’. Scr. Mater., 2012, 66, 682–685. doi: 10.1016/j.scriptamat.2012.01.023
  • Wei Q., Wang L., Fu Y., Qin J., Lu W. and Zhang D.: ‘Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy’. Mater. Des., 2011, 32, 2934–2939. doi: 10.1016/j.matdes.2010.11.049
  • Souza S. A., Manicardi R. B., Ferrandini P. L., Afonso C. R. M., Ramirez A. J. and Caram R.: ‘Effect of the addition of Ta on microstructure and properties of Ti–Nb alloys’. J. Alloys Compd., 2010, 504, 330–340. doi: 10.1016/j.jallcom.2010.05.134
  • Zhang D. C., Mao Y. F., Li Y. L., Li J. J., Yuan M. and Lin J. G.: ‘Effect of ternary alloying elements on microstructure and superelastictity of Ti-Nb alloys’. Mater. Sci. Eng. A, 2013, A559, 706–710. doi: 10.1016/j.msea.2012.09.012
  • Lopes E. S. N., Cremasco A., Afonso C. R. M. and Caram R.: ‘Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti-Nb alloys’. Mater. Charact., 2011, 62, 673–680. doi: 10.1016/j.matchar.2011.04.015
  • Zhou Z. C., Xiong J. Y., Gu S. Y., Yang D. K., Yan Y. J. and Du J.: ‘Anelastic relaxation caused by interstitial atoms in β-type sintered Ti–Nb alloys’. J. Alloys Compd., 2011, 509, 7356–7360. doi: 10.1016/j.jallcom.2011.04.090
  • Xiao-Jun W.: ‘Effects of alkali and heat treatment on strength of porous Ti35Nb’. Trans. Nonferrous Met. Soc. China, 2011, 21, 1335–1339. doi: 10.1016/S1003-6326(11)60862-5
  • Raman V., Nagarajan S. and Rajendran N.: ‘Electrochemical impedance spectro-scopic characterisation of passive film formed over Ti-29Nb-13Ta-4.6Zr alloy’. Electrochem. Commun., 2006, 8, 1309–1314. doi: 10.1016/j.elecom.2006.06.004
  • Wang B. L., Zheng Y. F. and Zhao L. C.: ‘Electrochemical corrosion behavior of biomedical Ti-22Nb and Ti-22Nb–6Zr alloys in saline medium’. Mater. Corros., 2009, 60, (10), 788–794. doi: 10.1002/maco.200805173
  • Cremasco A., Osorio W. R., Freire C. M. A., Garcia A. and Caram R.: ‘Electrochemicalcorrosion behavior of a Ti-35Nb alloy for medical prostheses’. Electrochim. Acta, 2008, 53, 4867–4874. doi: 10.1016/j.electacta.2008.02.011
  • Mutlu I. and Oktay E.: ‘Localised corrosion behaviour of biomedical implant materials using electrochemical potentiokinetic reactivation and critical pitting potential methods’. Corros. Eng. Sci. Technol., 2015, 50, (1), 72–79. doi: 10.1179/1743278214Y.0000000192
  • Cardoso F. F., Cremasco A., Contieri R. J., Lopes E. S. N., Afonso C. R. M. and Caram R.: ‘Hexagonal martensite decomposition and phase precipitation in Ti-Cu alloys’. Mater. Des., 2011, 32, 4608–4613. doi: 10.1016/j.matdes.2011.03.040
  • Luangvaranunt T. and Pripanapong P.: Mater. Trans., 2012, 53, (3), 518–523. doi: 10.2320/matertrans.M2011293
  • Shirai T., Tsuchiya H., Shimizu T., Ohtani K., Zen Y. and Tomita K.: ‘Prevention of pin tract infection with titanium-copper alloys’. J. Biomed. Mater. Res. Part B, 2009, 91, (1), 373–380. doi: 10.1002/jbm.b.31412
  • Gurappa I.: ‘Characterisation of different materials for corrosion resistance under simulated body fluid conditions’. Mater. Charact., 2002, 49, 73–79. doi: 10.1016/S1044-5803(02)00320-0
  • Liu J., Li F., Liu C., Wang H., Ren B., Yang K. and Zhang E.: ‘Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys’. Mater. Sci. Eng. C, 2014, C35, 392–400. doi: 10.1016/j.msec.2013.11.028
  • Albrektsson T. and Isidor F.: ‘Consensus report of session IV’, in ‘Proceedings of the First European Workshop on periodontology’, (ed. Lang N. P. and Karring T.., 365–369; 1994, London, Quintessence.
  • Albrektsson T. and Johansson C.: ‘Osteoinduction, osteoconduction and osseointegration’. Eur. Spine J., 2001, 10, 96–101. doi: 10.1007/s005860100282
  • Yoshinari M., Oda Y., Kato T. and Okuda K.: ‘Influence of surface modifications to titanium on antibacterial activity in vitro’. Biomaterials, 2001, 22, 2043–2048. doi: 10.1016/S0142-9612(00)00392-6
  • Woldemedhin M. T., Raabe D. and Hassel A. W.: ‘Characterization of thin anodic oxides of Ti–Nb alloys by electrochemical impedance spectroscopy’, Electrochim. Acta, 2012, 82, 324–332. doi: 10.1016/j.electacta.2012.06.029
  • Bai Y. J., Wang Y. B., Cheng Y., Deng F., Zheng Y. F. and Wei S. C.: ‘Comparative study on the corrosion behavior of Ti–Nb and TMA alloys for dental application in various artificial solutions’, Mater. Sci. Eng. C, 2011, C31, 702–711. doi: 10.1016/j.msec.2010.12.010
  • Rosalbino F., Delsante S., Borzone G. and Scavino G.: ‘Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment’, J. Mater. Sci. – Mater. Med., 2012, 23, 1129–1137. doi: 10.1007/s10856-012-4591-9
  • Martins D. Q., Osorio W. R., Souza M. E. P., Caram R. and Garcia A.: ‘Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications’, Electrochim. Acta, 2008, 53, 2809–2817. doi: 10.1016/j.electacta.2007.10.060
  • Saji V. S. and Choe H. C.: ‘Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer's solution’, Corros. Sci., 2009, 51, 1658–1663. doi: 10.1016/j.corsci.2009.04.013
  • Mareci D., Chelariu R., Dan I., Gordin D. M. and Gloriant T.: ‘Corrosion behaviour of Ti20Mo alloy in artificial saliva’. J. Mater. Sci. – Mater. Med., 2010, 21, 2907–2913. doi: 10.1007/s10856-010-4147-9
  • Sharma M., Kumar A. V. R., Singh N., Adya N. and Saluja B.: ‘Electrochemical corrosion behavior of dental/implant alloys in artificial saliva’ J. Mater. Eng. Perform., 2008, 17, 695–701. doi: 10.1007/s11665-008-9198-4
  • Ho W. F., Wu S. C., Lin C. W. and Hsu S. K. H. C.: ‘Electrochemical behavior of Ti-20Cr-X alloys in artificial saliva containing fluoride’. J. Appl. Electrochem., 2011, 41, 337–343. doi: 10.1007/s10800-010-0243-2
  • Oshida Y., Sellers C. B., Mirza K. and Farzin-Nia F.: ‘Corrosion of dental materials by dental treatment agents’. Mater. Sci. Eng. C, 2005, C25, 343–348. doi: 10.1016/j.msec.2004.11.004
  • Kumar S., Narayanan T. S. N. S. and Kumar S. S.: ‘Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application’. Corros. Sci., 2010, 52, 1721–1727. doi: 10.1016/j.corsci.2010.01.008
  • Xie F., He X., Cao S., Mei M. and Qu X.: ‘Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications’. Electrochim. Acta, 2013, 105, 121–129. doi: 10.1016/j.electacta.2013.04.105
  • Osorio W. R., Cremasco A., Andrade P. N., Garcia A. and Caram R.: ‘Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications’. Electrochim. Acta, 2010, 55, 759–770. doi: 10.1016/j.electacta.2009.09.016
  • Robin A. and Meirelis J. P.: ‘Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva’. J. Appl. Electrochem., 2007, 37, 511–517. doi: 10.1007/s10800-006-9283-z
  • Fojt J., Joska L. and Malek J.: ‘Corrosion behaviour of porous Ti-39Nb alloy for biomedical applications’. Corros. Sci., 2013, 71, 78–83. doi: 10.1016/j.corsci.2013.03.007
  • García C., Martín F., Tiedra P., Blanco Y., Roman J. M. R. and Aparicio M.: ‘Electrochemical reactivation methods applied to PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere’. Corros. Sci., 2008, 50, 687–697. doi: 10.1016/j.corsci.2007.10.001
  • Mutlu I.: ‘Sinter-coating method for the production of TiN-coated titanium foam for biomedical implant applications’. Surf. Coat. Technol., 2013, 232, 396–402. doi: 10.1016/j.surfcoat.2013.05.041
  • Nakagawa M., Matsuya S. and Udoh K.: ‘Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions’. Dent. Mater. J., 2001, 20, (4), 305–314. doi: 10.4012/dmj.20.305

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.