Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 51, 2016 - Issue 3
152
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Effect of Pt, Pd, Au and Ag on oxidation behaviour of Fe3Al intermetallic

, , , &
Pages 179-186 | Received 20 Apr 2015, Accepted 10 Jul 2015, Published online: 18 May 2016

References

  • P. F. Tortorelli and K. Natesan: ‘Critical factors affecting the high temperature corrosion performance of iron aluminides’, Mater. Sci. Eng. A, 1998, 258, 115–125. doi: 10.1016/S0921-5093(98)00924-1
  • J. Klöwer, U. Brill and U. Heubner: ‘High temperature corrosion behaviour of nickel aluminides: effects of chromium and zirconium’, Intermetallics, 1999, 7, 1183–1194. doi: 10.1016/S0966-9795(99)00042-4
  • N. Babu, R. Balasubramaniam and A. Ghosh: ‘High-temperature oxidation of Fe3Al-based iron aluminides in oxygen’, Corros. Sci., 2001, 43, 2239–2254. doi: 10.1016/S0010-938X(01)00035-X
  • P. Hausild, M. Karlík, T. Skiba, P. Sajdl, J. Dubskýand and M. Palm: ‘High temperature oxidation of spark plasma sintered and thermally sprayed FeAl-based iron aluminides’, Acta Phys. Pol. A, 2012, 122, 545–551.
  • X. Zhu, Z. Yao, X. Gu, W. Cong and P. Zhang: ‘Microstructure and corrosion resistance of Fe-Al intermetallic coating on 45 steel synthesized by double glow plasma surface alloying technology’, Trans. Nonferrous Met. Soc. China, 2009, 19, 143–148. doi: 10.1016/S1003-6326(08)60242-3
  • V. Síma, P. Kratochvíl, P. Kozelský, I. Schindler and P. Hána: ‘FeAl-based alloys cast in an ultrasound field’, Int. J. Mater. Res., 2009, 100, 382–385. doi: 10.3139/146.110041
  • P. Kratochvíl, F. Dobes and V. Vodicková: ‘The effect of silicon on the structure of Fe-40 at.% Al type alloys with high contents of carbon (1.9-3.8 at.%)’, Intermetallics, 2009, 17, 39–45. doi: 10.1016/j.intermet.2008.09.004
  • P. Kratochvíl: ‘The history of the search and use of heat resistant Pyroferal alloys based on FeAl’, Intermetallics, 2008, 16, 587–591. doi: 10.1016/j.intermet.2008.01.008
  • G. H. Meier and F. S. Pettit: ‘High temperature oxidation and corrosion of intermetallic compounds’, Mat. Sci. Technol., 1992, 8, 331–338. doi: 10.1179/mst.1992.8.4.331
  • M. Kupka: ‘Technological plasticity studies of the FeAl intermetallic phase based alloy’, Intermetallics, 2004, 12, 295–302. doi: 10.1016/j.intermet.2003.11.001
  • K. Wolski, F. Thévenot and J. Le Coze: ‘Effect of nanometric oxide dispersion on creep resistance of ODS-FeAl prepared by mechanical alloying’, Intermetallics, 1996, 4, 299–307. doi: 10.1016/0966-9795(95)00053-4
  • H. J. Grabke, M. Brumm and M. Steinhorst: ‘Development of oxidation resistant high temperature intermetallics’, Mater. Sci. Technol., 1992, 8, 339–344. doi: 10.1179/mst.1992.8.4.339
  • T. Skiba, P. Hausild, M. Karlík, K. Vanmeensel and J. Vleugels: ‘Mechanical properties of spark plasma sintered FeAl intermetallics’, Intermetallics, 2010, 18, 1410–1414. doi: 10.1016/j.intermet.2010.02.009
  • A. Barnoush, J. Dake, N. Kheradmand and H. Vehoff: ‘Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques’, Intermetallics, 2010, 18, 1385–1389. doi: 10.1016/j.intermet.2010.01.001
  • A. Barnoush, M. Zamanzade, H. Vehoff and A. Barnoush: ‘Direct observation of hydrogen-enhanced plasticity in super duplex stainless steel by means of in situ electrochemical methods’, Scr. Mater., 2010, 62, 242–245. doi: 10.1016/j.scriptamat.2009.11.007
  • C. H. Xu and W. Gao: ‘Oxidation behaviour of FeAl intermetallics: effects of reactive elements on cyclic oxidation properties’, Mater. Sci. Technol., 2001, 17, 324–332. doi: 10.1179/026708301773002545
  • D. Janda, H. Fietzek, M. Galetz and M. Heilmaier: ‘The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys’, Intermetallics, 2013, 41, 51–57. doi: 10.1016/j.intermet.2013.04.016
  • P. Novák, M. Zelinková, J. Serák, A. Michalcová, M. Novák and D. Vojtech: ‘Oxidation resistance of SHS Fe-Al-Si alloys at 800 °C in air’, Intermetallics, 2011, 19, 1306–1312. doi: 10.1016/j.intermet.2011.04.011
  • P. Peled and D. Itzhak: ‘The effect of noble alloying elements Ag, Pt and Au on the corrosion behavior of sintered stainless steel in an H2SO4 environment’, Corros. Sci., 1988, 28, 1019–1028. doi: 10.1016/0010-938X(88)90018-2
  • P. Peled and D. Itzhak: ‘The surface composition of sintered stainless steel containing noble alloying elements exposed to a H2SO4 environment’, Corros. Sci., 1991, 32, 83–90. doi: 10.1016/0010-938X(91)90064-V
  • G. J. Janz, A. Conte and E. Neuenschwander: ‘Corrosion of platinum, gold, silver and refractories in molten carbonates’, Corrosion, 1963, 19, 2921–2941. doi: 10.5006/0010-9312-19.8.292
  • G. J. Janz and A. Conte: ‘Corrosion of gold–palladium, nickel and type 347 stainless steel in molten carbonates’, Corrosion, 1964, 20, 237t–238t. doi: 10.5006/0010-9312-20.7.237t
  • Y. Niu, Z. L. Zhao, F. Gesmundo and M. Al-Omary: ‘The air oxidation of two Cu-Ni-Ag alloys at 600-700°C’, Corros. Sci., 2001, 43, 1541–1556. doi: 10.1016/S0010-938X(00)00163-3
  • X. X. Ma, Y. D. He and D. R. Wang: ‘Inert anode composed of Ni-Cr alloy substrate, intermediate oxide film and α-Al2O3/Au (Au-Pt, Au-Pd, Au-Rh) surface composite coating for aluminum electrolysis’, Corros. Sci., 2011, 53, 1009–1017. doi: 10.1016/j.corsci.2010.11.035
  • G. Wang, R. Carter and D. L. Douglass: ‘High temperature sulfidation of Fe-Nb alloys’, Oxid. Met., 1989, 32, 273–294. doi: 10.1007/BF00664802
  • R. Shiring and D. L. Douglass: ‘Sulfidation behavior of rhenium and cobalt-rhenium alloys’, Oxid. Met., 1999, 52, 353–377. doi: 10.1023/A:1018851830666
  • D. Janda, H. Fietzek, M. Galetz and M. Heilmaier: ‘The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys’, Intermetallics, 2013, 41, 51–57. doi: 10.1016/j.intermet.2013.04.016
  • A. Hotar and M. Palm: ‘Oxidation resistance of Fe-25Al-2Ta (at.%) in air’, Intermetallics, 2010, 18, 1390–1395. doi: 10.1016/j.intermet.2010.02.014
  • B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner and K. B. Alexander: ‘Substrate and bond coat compositions: factors affecting alumina scale adhesion’, Mater. Sci. Eng., 1998, A245, 201–211. doi: 10.1016/S0921-5093(97)00851-4
  • I. G. Wright, B. A. Pint, W. Y. Lee, K. B. Alexander and K. Prüßner: ‘Some effects of metallic substrate composition on degradation of thermal barrier coatings’, in ‘High temperature surface engineering’, (ed. J. Nicholls and D. Rickerby., 95–113; 2000, London, Institute of Materials.
  • B. Pöter, F. Stein, R. Wirth and M. Spiegel: ‘Early stages of protective oxide layer growth of binary iron aluminides’, Z. Phys. Chem, 2005, 219, 1489–1503. doi: 10.1524/zpch.2005.219.11.1489
  • P. F. Tortorelli and J. H. DeVan: ‘Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments’, Mater. Sci. Eng., 1992, A153, 573–577. doi: 10.1016/0921-5093(92)90253-W

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.