2,238
Views
105
CrossRef citations to date
0
Altmetric
Original Article

Novel approaches to multiscale modelling in materials science

Pages 207-225 | Published online: 12 Nov 2013

References

  • Cahn RW: ‘The coming of materials science’; 2001, Oxford, Pergamon.
  • Baschnagel J, Binder K, Doruker P, Gusev AA, Hahn O, Kremer K, Mattice WL, Müller-Plathe F, Murat M, Paul W, Santos S, Suter UW, Tries V: ‘Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives’, Adv. Polym. Sci., 2000, 152, 41–156.
  • Rudd RE, Broughton JQ: ‘Concurrent coupling of length scales in solid state systems’, Phys. Status Solidi (b), 2000, 217, (1), 251–291.
  • Smith GS, Tadmor EB, Kaxiras E: ‘Multiscale simulation of loading and electrical resistance in silicon nanoindentation’, Phys. Rev. Lett., 2000, 84, (6), 1260–1263.
  • Flewitt PEJ: ‘The use of multiscale materials modelling within the UK nuclear industry’, Mater. Sci. Eng. A, 2004, A365, (1–2), 257–266.
  • Elliott JA, Hancock BC: ‘Pharmaceutical materials science: an active new frontier in materials research’, Mater. Res. Soc. Bull., 2006, 31, (11), 869–873.
  • Liu WK, Karpov EG, Zhang S, Park HS: ‘An introduction to computational nanomechanics and materials’, Comput. Methods Appl. Mech. Eng., 2004, 193, (17–20), 1529–1578.
  • Stoneham AM: ‘The challenges of nanostructures for theory’, Mater. Sci. Eng. C, 2003, C23, (1–2), 235–241.
  • Kim S, Yamaguchi S, Elliott JA: ‘Solid-state ionics in the 21st century: current status and future prospects’, Mater. Res. Soc. Bull., 2009, 34, (12), 900–906.
  • Nieminen RM: ‘From atomistic simulation towards multiscale modelling of materials’, J. Phys.: Condens. Matter, 2002, 14, (11), 2859–2876.
  • Vvedensky DD: ‘Multiscale modelling of nanostructures’, J. Phys.: Condens. Matter, 2004, 16, (50), R1537–R1576.
  • Gates TS, Odegard GM, Frankland SJV, Clancy TC: ‘Computational materials: multi-scale modeling and simulation of nanostructured materials’, Compos. Sci. Technol., 2005, 65, (15–16), 2416–2434.
  • Guo ZX (ed.): ‘Multiscale materials modelling: Fundamentals and applications’; 2007, Cambridge, Woodhead Publishing.
  • Fitzgerald G, Goldbeck-Wood G, Kung P, Petersen M, Subramanian L, Wescott J: ‘Materials modeling from quantum mechanics to the mesoscale’, Comput. Model. Eng. Sci., 2008, 24, (2–3), 169–183.
  • Stoneham AM: ‘Computational physics: a perspective’, Phil. Trans. R. Soc. Lond. Math. Phys. Sci., 2002, 360, (1795), 1107–1121.
  • Larson BC, Yang W, Ice GE, Budai JD, Tischler JZ: ‘Three-dimensional X-ray structural microscopy with submicrometre resolution’, Nature, 2002, 415, (6874), 887–890.
  • Fu XW, Dutt M, Bentham AC, Hancock BC, Cameron RE, Elliott JA: ‘Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method’, Powder Technol., 2006, 167, (3), 134–140.
  • Buffiere JY, Cloetens P, Ludwig W, Maire E, Salvo L: ‘In situ X-ray tomography studies of microstructural evolution combined with 3D modeling’, Mater. Res. Soc. Bull., 2008, 33, (6), 611–619.
  • Tabor G, Yeo O, Young P, Laity P: ‘CFD simulation of flow through an open cell foam’, Int. J. Mod. Phys. C, 2008, 19C, (5), 703–715.
  • McDonald SA, Dedreuil-Monet G, Yao YT, Alderson A, Withers PJ: ‘In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension’, Phys. Status Solidi (b), 2011, 248, (1), 45–51.
  • Moore GE: ‘Cramming more components onto integrated circuits’, Electronics, 1965, 38, 114–117.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani VBG, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ: Gaussian 09, Gaussian Inc., Wallingford, CT, USA, 2009.
  • Materials Studio,, Accelrys Inc., San Diego, CA, USA, 2005
  • Abaqus FEA, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2005
  • Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC: ‘First-principles simulation: ideas, illustrations and the CASTEP code’, J. Phys.: Condens. Matter, 2002, 14, (11), 2717–2744.
  • Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC: ‘First principles methods using CASTEP’, Z. Kristallogr., 2005, 220, (5–6), 567–570.
  • Kresse G, Furthmuller J: ‘Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set’, Phys. Rev. B, 1996, 54B, (16), 11169–11186.
  • Doi M: ‘The OCTA project’, 2002, http://octa.jp.
  • Ruhle V, Junghans C, Lukyanov A, Kremer K, Andrienko D: ‘Versatile Object-oriented Toolkit for Coarse-Graining Applications’, J. Chem. Theory Comput., 2009, 5, (12), 3211–3223.
  • Porter D: ‘Modelling of structural materials’, Int. Mater. Rev., 2002, 47, (5), 225–232.
  • Bacon DJ, Osetsky YN: ‘Modelling atomic scale radiation damage processes and effects in metals’, Int. Mater. Rev., 2002, 47, (5), 233–241.
  • Pan J: ‘Modelling sintering at different length scales’, Int. Mater. Rev., 2003, 48, (2), 69–85.
  • Yip S, ed (ed.): ‘Handbook of materials modelling’; 2005, Dordrecht, Springer.
  • Elliott JA: ‘Handbook of Materials Modelling: a review’, Materials Today, 2006, 51–52.
  • Raabe D: ‘Computational materials science’; 1998, Weinheim, Wiley-VCH.
  • Berendsen HJC: ‘Simulating the physical world: hierarchical modeling from quantum mechanics to fluid dynamics’; 2005, Cambridge, Cambridge University Press.
  • Voth GA (ed.): ‘Coarse-graining of condensed phase and biomolecular systems’; 2009, Boca Raton, FL, CRC Press.
  • Guo ZX, Pettifor D, Kubin L, Kostorz G: ‘Selected papers of the 1st International Conference on Multiscale Materials Modelling – London, United Kingdom 17–20, July 2002 – Preface’, Mater. Sci. Eng. A, 2004, A365, (1–2), 1–1.
  • Cummings PT, Jackson G: ‘Foundations of Molecular Modelling and Simulation: FOMMS 2003’, Mol. Phys., 2004, 102, (2–4), 137.
  • McCabe C, Golab JT, Cummings PT: ‘Third Foundations of Molecular Modeling and Simulation Conference: FOMMS 2006’, Mol. Phys., 2007, 105, (2–3), 137.
  • Rickman JM, LeSar R: ‘Computational materials research’, Annu. Rev. Mater. Res., 2002, 32.
  • Diaz de la Rubia T, Kaxiras T, Bulatov V, Ghoniem NM, Phillips R (eds.): ‘Multiscale modeling of materials’, MRS Symp., 1999, 538.
  • Kubin LP, Bassani JL, Cho K, Gao H, Selinger RLB (eds.): ‘Multiscale modeling of materials’, MRS Symp., 2001, 653.
  • Lassila DH, Robertson IM, Phillips R, Devincre B (eds.): ‘Multiscale phenomena in materials: experiments and modeling’, MRS Symp., 2000, 578.
  • Hemker KJ, Lassila DH, Levine LE, Zbib HM (eds.): ‘Multiscale phenomena in materials: experiments and modeling’, MRS Symp., 2003, 779.
  • de Pablo JJ, Curtin WA: ‘Multiscale modeling in advanced materials research: challenges, novel methods, and emerging applications’, Mater. Res. Soc. Bull., 2007, 32, (11), 905–911.
  • Editorial: ‘Materials modelling review’, Mater. World, 1996, 4, (10), 571–571.
  • Shercliff HR: ‘Modelling of materials and processes’, CUED/C-MATS/TR243, Cambridge University Engineering Department, Cambridge, UK, 1997.
  • Barber Z H, ed (ed.): ‘Introduction to materials modelling’; 2005, London, Maney Publishing.
  • Groh S, Zbib HM: ‘Advances in discrete dislocations dynamics and multiscale modeling’, J. Eng. Mater. Technol. ASME, 2009, 131, (4), 10.
  • Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P, Kalia RK: ‘Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers’, Comput. Phys. Commun., 2001, 138, (2), 143–154.
  • Miller RE, Tadmor EB: ‘Hybrid continuum mechanics and atomistic methods for simulating materials deformation and failure’, Mater. Res. Soc. Bull., 2007, 32, (11), 920–926.
  • Miller RE, Tadmor EB: ‘A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods’, Model. Simul. Mater. Sci. Eng., 2009, 17, (5), -.
  • Bernstein N, Kermode JR, Csanyi G: ‘Hybrid atomistic simulation methods for materials systems’, Rep. Progr. Phys., 2009, 72, (2).
  • Leach AR: ‘Molecular modelling: principles and applications’; 2001, Harlow, Prentice-Hall.
  • Frenkel D, Smit B: ‘Understanding molecular simulation’; 2002, San Diego, CA, Academic Press.
  • Rapaport DC: ‘The art of molecular dynamics simulation’; 2004, Cambridge, Cambridge University Press.
  • Landau DP, Binder K: ‘A guide to Monte Carlo simulations in statistical physics’; 2009, Cambridge, Cambridge University Press.
  • Finnis M: ‘Interatomic forces in condensed matter’; 2003, New York, Oxford University Press.
  • Kohanoff J: ‘Electronic structure calculations for solids and molecules’; 2006, New York, Cambridge University Press.
  • Skylaris CK, Haynes PD, Mostofi AA, Payne MC: ‘Introducing ONETEP: Linear-scaling density functional simulations on parallel computers’, J. Chem. Phys., 2005, 122, (8).
  • Freeman CL, Harding JH, Cooke DJ, Elliott JA, Lardge JS, Duffy DM: ‘New forcefields for modeling biomineralization processes’, J. Phys. Chem. C, 2007, 111C, (32), 11943–11951.
  • Pickard CJ, Needs RJ: ‘Structures at high pressure from random searching’, Phys. Status Solidi (b), 2009, 246, (3), 536–540.
  • Torrie GM, Valleau JP: ‘Non-physical sampling distributions in Monte-Carlo free-energy estimation - umbrella sampling’, J. Comput. Phys., 1977, 23, (2), 187–199.
  • Berg BA, Neuhaus T: ‘Multicanonical ensemble - a new approach to simulate 1st-order phase-transitions’, Phys. Rev. Lett., 1992, 68, (1), 9–12.
  • Wang F, Landau DP: ‘Efficient, multiple-range random walk algorithm to calculate the density of states’, Phys. Rev. Lett., 2001, 86, (10), 2050–2053.
  • Laio A, Parrinello M: ‘Escaping free-energy minima’, Proc. Natl Acad. Sci. USA, 2002, 99, (20), 12562–12566.
  • Laio A, Gervasio FL: ‘Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science’, Rep. Progr. Phys., 2008, 71, (12), 126601.
  • Voter AF: ‘A method for accelerating the molecular dynamics simulation of infrequent events’, J. Chem. Phys., 1997, 106, (11), 4665–4677.
  • Voter AF: ‘Hyperdynamics: accelerated molecular dynamics of infrequent events’, Phys. Rev. Lett., 1997, 78, (20), 3908–3911.
  • Uberuaga BP, Voter AE: ‘Determing reaction mechanisms’, in ‘Handbook of materials modelling’, (ed. , Yip S, ed); 2005, Dordrecht, Springer.
  • Widom B: ‘Some topics in the theory of fluids’, J. Chem. Phys., 1963, 39, (11), 2808–2812.
  • Evans MG, Polanyi M: ‘Some applications of the transition state method to the calculation of reaction velocities, especially in solution.’, Faraday Trans., 1935, 31, (1), 0875–0893.
  • Eyring H: ‘The activated complex in chemical reactions’, J. Chem. Phys., 1935, 3, (2), 107–115.
  • Chandler D: ‘Introduction to modern statistical mechanics’; 1987, New York, Oxford University Press.
  • Vineyard GH: ‘Frequency factors and isotope effects in solid state rate processes’, J. Phys. Chem. Solids, 1957, 3, (1–2), 121–127.
  • Voter AF, Montalenti F, Germann TC: ‘Extending the time scale in atomistic simulation of materials’, Annu. Rev. Mater. Res., 2002, 32, 321–346.
  • Miron RA, Fichthorn KA: ‘Accelerated molecular dynamics with the bond-boost method’, J. Chem. Phys., 2003, 119, (12), 6210–6216.
  • Hamelberg D, Mongan J, McCammon JA: ‘Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules’, J. Chem. Phys., 2004, 120, (24), 11919–11929.
  • Smith W, Forester TR: ‘DL_POLY_2·0: A general-purpose parallel molecular dynamics simulation package’, J. Mol. Graph., 1996, 14, (3), 136–141.
  • Smith W, Yong CW, Rodger PM: ‘DL_POLY: application to molecular simulation’, Mol. Simul., 2002, 28, (5), 385–471.
  • Smith W: ‘DL_POLY-applications to molecular simulation II’, Mol. Simul., 2006, 32, (12–13), 933–933.
  • Smith W, Forester TR, Todorov IT: ‘The DL_POLY Molecular Simulation Package’, http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/.
  • Voter AF, Sorensen MR: ‘Accelerating atomistic simulations of defect dynamics: Hyperdynamics, parallel replica dynamics, and temperature-accelerated dynamics’, Mater. Res. Soc. Symp. Proc., 1999, 538, 427–439.
  • Sorensen MR, Voter AF: ‘Temperature-accelerated dynamics for simulation of infrequent events’, J. Chem. Phys., 2000, 112, (21), 9599–9606.
  • Jonsson H, Mills G, Jacobsen:‘ in ‘Classical and quantum dynamics in condensed phase simulations’(, Berne B J, et al.), 385–404; 1998, Singapore, World Scientific.
  • Henkelman G, Jonsson H: ‘Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points’, J. Chem. Phys., 2000, 113, (22), 9978–9985.
  • Plimpton S: ‘Fast parallel algorithms for short-range molecular-dynamics’, J. Comput. Phys., 1995, 117, (1), 1–19.
  • Plimpton S: ‘Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)’, http://lammps.sandia.gov.
  • Vashishta P, Kalia RK, Li W, Nakano A, Omeltchenko A, Tsuruta K, Wang JH, Ebbsjo I: ‘Million atom molecular dynamics simulations of materials on parallel computers’, Curr. Opin. Solid State Mater. Sci., 1996, 1, (6), 853–863.
  • Brown R: ‘A brief account of the microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organics and inorganic bodies’, Phil. Mag., 1828, 4, 161–173.
  • Einstein A: ‘Investigations on the theory of the Brownian movement’, Ann. d. Phys., 1905, 17, 549.
  • Rafii-Tabar H, Hua L, Cross M: ‘A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate’, J. Phys.: Condens. Matter, 1998, 10, (11), 2375–2387.
  • Stoneham AM, Harding JH: ‘Not too big, not too small: the appropriate scale’, Nat. Mater., 2003, 2, (2), 77–83.
  • Tschop W, Kremer K, Batoulis J, Burger T, Hahn O: ‘Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates’, Acta Polym., 1998, 49, (2–3), 61–74.
  • Tschop W, Kremer K, Hahn O, Batoulis J, Burger T: ‘Simulation of polymer melts. II. From coarse-grained models back to atomistic description’, Acta Polym., 1998, 49, (2–3), 75–79.
  • Müller-Plathe F: ‘Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back’, Chem. Phys. Chem., 2002, 3, (9), 754–769.
  • Reith D, Putz M, Müller-Plathe F: ‘Deriving effective mesoscale potentials from atomistic simulations’, J. Comput. Chem., 2003, 24, (13), 1624–1636.
  • Nielsen SO, Lopez CF, Srinivas G, Klein ML: ‘Coarse grain models and the computer simulation of soft materials’, J. Phys.: Condens. Matter, 2004, 16, (15), R481–R512.
  • Izvekov S, Violi A, Voth GA: ‘Systematic coarse-graining of nanoparticle interactions in molecular dynamics simulation’, J. Phys. Chem. B, 2005, 109B, (36), 17019–17024.
  • Izvekov S, Voth GA: ‘Multiscale coarse graining of liquid-state systems’, J. Chem. Phys., 2005, 123, (13).
  • Praprotnik M, Junghans C, Delle Site L, Kremer K: ‘Simulation approaches to soft matter: Generic statistical properties vs. chemical details’, Comput. Phys. Commun., 2008, 179, (1–3), 51–60.
  • Poblete S, Praprotnik M, Kremer K, Delle Site L: ‘Coupling different levels of resolution in molecular simulations’, J. Chem. Phys., 2010, 132, (11), 114101.
  • Glotzer SC, Paul W: ‘Molecular and mesoscale simulation methods for polymer materials’, Annu. Rev. Mater. Res., 2002, 32, 401–436.
  • Haire KR, Carver TJ, Windle AH: ‘A Monte Carlo lattice model for chain diffusion in dense polymer systems and its interlocking with molecular dynamics simulation’, Comput. Theor. Polym. Sci., 2001, 11, 17–28.
  • Ferrenberg AM, Swendsen RH: ‘New Monte-Carlo technique for studying phase-transitions’, Phys. Rev. Lett., 1988, 61, (23), 2635–2638.
  • Ferrenberg AM: ‘Addition’, Phys. Rev. Lett., 1989, 63, (15), 1658–1658.
  • Antypov D, Elliott JA: ‘Computer simulation study of a single polymer chain in an attractive solvent’, J. Chem. Phys., 2008, 129, (17), 174901.
  • Bachmann M, Janke W: ‘Conformational transitions of nongrafted polymers near an absorbing substrate’, Phys. Rev. Lett., 2005, 95, (5), 058102.
  • Krawczyk J, Owczarek AL, Prellberg T, Rechnitzer A: ‘Layering transitions for adsorbing polymers in poor solvents’, Europhys. Lett., 2005, 70, (6), 726–732.
  • Antypov D, Elliott JA: ‘Wang-Landau simulation of polymer-nanoparticle mixtures’, Macromolecules, 2008, 41, (19), 7243–7250.
  • Queyroy S, Neyertz S, Brown D, Müller-Plathe F: ‘Preparing relaxed systems of amorphous polymers by multiscale simulation: application to cellulose’, Macromolecules, 2004, 37, (19), 7338–7350.
  • Louis AA, Bolhuis PG, Hansen JP, Meijer EJ: ‘Can polymer coils be modeled as “soft colloids”?’, Phys. Rev. Lett., 2000, 85, (12), 2522–2525.
  • Wang YT, Izvekov S, Yan TY, Voth GA: ‘Multiscale coarse-graining of ionic liquids’, J. Phys. Chem. B, 2006, 110B, (8), 3564–3575.
  • Malevanets A, Kapral R: ‘Solute molecular dynamics in a mesoscale solvent’, J. Chem. Phys., 2000, 112, (16), 7260–7269.
  • Praprotnik M, Delle Site L, Kremer K: ‘Multiscale simulation of soft matter: from scale bridging to adaptive resolution’, Annu. Rev. Phys. Chem., 2008, 59, 545–571.
  • Zhu HP, Zhou ZY, Yang RY, Yu AB: ‘Discrete particle simulation of particulate systems: Theoretical developments’, Chem. Eng. Sci., 2007, 62, (13), 3378–3396.
  • Zhu HP, Zhou ZY, Yang RY, Yu AB: ‘Discrete particle simulation of particulate systems: a review of major applications and findings’, Chem. Eng. Sci., 2008, 63, (23), 5728–5770.
  • Dutt M, Hancock B, Bentham C, Elliott J: ‘An implementation of granular dynamics for simulating frictional elastic particles based on the DL_POLY code’, Comput. Phys. Commun., 2005, 166, (1), 26–44.
  • Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V: ‘Review and extension of normal force models for the discrete element method’, Powder Technol., 2007, 171, (3), 157–173.
  • Cheng YP, Nakata Y, Bolton MD: ‘Discrete element simulation of crushable soil’, Geotechnique, 2003, 53, (7), 633–641.
  • Groger T, Tuzun U, Heyes DM: ‘Modelling and measuring of cohesion in wet granular materials’, Powder Technol., 2003, 133, (1–3), 203–215.
  • Martin CL, Bouvard D, Shima S: ‘Study of particle rearrangement during powder compaction by the discrete element method’, J. Mech. Phys. Solids, 2003, 51, (4), 667–693.
  • Elliott JA, Benedict M, Dutt M: ‘Applications of DL_POLY to modelling of mesoscopic particulate systems’, Mol. Simul., 2006, 32, (12–13), 1113–1121.
  • Hoogerbrugge PJ, Koelman JMVA: ‘Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics’, Europhys. Lett., 1992, 19, 155–160.
  • Koelman JMVA, Hoogerbrugge PJ: ‘Dynamic simulations of hard-sphere suspensions under steady shear’, Europhys. Lett., 1993, 21, 363–368.
  • Groot RD, Warren PB: ‘Dissipative particle dynamics: Bridging the gap between atomistic and mesoscale simulation’, J. Chem. Phys., 1997, 107, 4423–4435.
  • Español P, Warren PB: ‘Statistical mechanics of dissipative particle dynamics’, Europhys. Lett., 1995, 30, 191–196.
  • Ermak DL, McCammon JA: ‘Brownian dynamics with hydrodynamic interactions’, J. Chem. Phys., 1978, 69, 1352–1360.
  • Flory PJ: ‘Statistical mechanics of chain molecules’; 1969, New York, Interscience Publishers,
  • Español P: ‘Hydrodynamics from dissipative particle dynamics’, Phys. Rev. E, 1995, 52E, (2), 1734–1742.
  • Limbach HJ, Arnold A, Mann BA, Holm C: ‘ESPResSo – an extensible simulation package for research on soft matter systems’, Comput. Phys. Commun., 2006, 174, (9), 704–727.
  • Elliott JA, Paddison SJ: ‘Modelling of morphology and proton transport in PFSA membranes’, Phys. Chem. Chem. Phys., 2007, 9, (21), 2602–2618.
  • Wu DS, Paddison SJ, Elliott JA: ‘A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations’, Energ. Environ. Sci., 2008, 1, (2), 284–293.
  • Wu DS, Paddison SJ, Elliott JA: ‘Effect of molecular weight on hydrated morphologies of the short-side-chain perfluorosulfonic acid membrane’, Macromolecules, 2009, 42, (9), 3358–3367.
  • Wu DS, Paddison SJ, Elliott JA, Hamrock SJ: ‘Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes’, Langmuir, 2010, 26, (17), 14308–14315.
  • Altevogt P, Evers OA, Fraaije J, Maurits NM, van Vlimmeren BAC: ‘The MesoDyn project: software for mesoscale chemical engineering’, J. Mol. Struct., 1999, 463, (1–2), 139–143.
  • Fraaije J, Zvelindovsky AV, Sevink GJA: ‘Computational soft nanotechnology with mesodyn’, Mol. Simul., 2004, 30, (4), 225–238.
  • Fredrickson GH, Ganesan V, Drolet F: ‘Field-theoretic computer simulation methods for polymers and complex fluids’, Macromolecules, 2002, 35, (1), 16–39.
  • Detcheverry FA, Kang HM, Daoulas KC, Müller M, Nealey PF, de Pablo JJ: ‘Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites’, Macromolecules, 2008, 41, (13), 4989–5001.
  • Kang H, Detcheverry FA, Mangham AN, Stoykovich MP, Daoulas KC, Hamers RJ, Müller M, de Pablo JJ, Nealey PF: ‘Hierarchical assembly of nanoparticle superstructures from block copolymer-nanoparticle composites’, Phys. Rev. Lett., 2008, 100, (14), 148303.
  • Detcheverry FA, Pike DQ, Nealey PF, Müller M, de Pablo JJ: ‘Monte Carlo simulation of coarse grain polymeric systems’, Phys. Rev. Lett., 2009, 102, (19), 197801.
  • Chen LQ: ‘Phase-field models for microstructure evolution’, Annu. Rev. Mater. Res., 2002, 32, 113–140.
  • Steinbach I: ‘Phase-field models in materials science’, Model. Simul. Mater. Sci. Eng., 2009, 17, (7), -.
  • Thornton K, Agren J, Voorhees PW: ‘Modelling the evolution of phase boundaries in solids at the meso- and nano-scales’, Acta Mater., 2003, 51, (19), 5675–5710.
  • Simmons JP, Wen Y, Shen C, Wang YZ: ‘Microstructural development involving nucleation and growth phenomena simulated with the Phase Field method’, Mater. Sci. Eng. A, 2004, A365, (1–2), 136–143.
  • Granasy L, Pusztai T, Warren JA, Douglas JF, Borzsonyi T, Ferreiro V: ‘Growth of “dizzy dendrites” in a random field of foreign particles’, Nat. Mater., 2003, 2, (2), 92–96.
  • Devincre B, Kubin LP: ‘Mesoscopic simulations of dislocations and plasticity’, Mater. Sci. Eng. A, 1997, A234, 8–14.
  • Bulatov V, Abraham FF, Kubin L, Devincre B, Yip S: ‘Connecting atomistic and mesoscale simulations of crystal plasticity’, Nature, 1998, 391, (6668), 669–672.
  • Ramakrishnan N, Arunachalam VS: ‘Finite element methods for materials modelling’, Progr. Mater. Sci., 1997, 42, (1–4), 253–261.
  • Zienkiewicz OC, Taylor RL, Zhu JZ: ‘The finite element method: its basics and fundamentals’; 2005, Oxford, Butterworth-Heinemann.
  • Curtin WA, Miller RE: ‘Atomistic/continuum coupling in computational materials science’, Model. Simul. Mater. Sci. Eng., 2003, 11, (3), R33–R68.
  • Liu B, Huang Y, Jiang H, Qu S, Hwang KC: ‘The atomic-scale finite element method’, Comput. Methods Appl. Mech. Eng., 2004, 193, (17–20), 1849–1864.
  • Choi JL, Gethin DT: ‘A discrete finite element modelling and measurements for powder compaction’, Model. Simul. Mater. Sci. Eng., 2009, 17, (3), 22.
  • Tadmor EB, Ortiz M, Phillips R: ‘Quasicontinuum analysis of defects in solids’, Phil. Mag. A, 1996, 73A, (6), 1529–1563.
  • Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R, Ortiz M: ‘An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method’, J. Mech. Phys. Solids, 1999, 47, (3), 611–642.
  • Miller RE, Tadmor EB: ‘The quasicontinuum method: overview, applications and current directions’, J. Comput. Aided Mater. Des., 2002, 9, (3), 203–239.
  • Tadmor EB, Phillips R, Ortiz M: ‘Mixed atomistic and continuum models of deformation in solids’, Langmuir, 1996, 12, (19), 4529–4534.
  • Shenoy VB, Miller R, Tadmor EB, Phillips R, Ortiz M: ‘Quasicontinuum models of interfacial structure and deformation’, Phys. Rev. Lett., 1998, 80, (4), 742–745.
  • Foiles SM, Baskes MI, Daw MS: ‘Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys’, Phys. Rev. B, 1986, 33B, (12), 7983–7991.
  • Ala-Nissila T, Ferrando R, Ying SC: ‘Collective and single particle diffusion on surfaces’, Adv. Phys., 2002, 51, (3), 949–1078.
  • Bacon DJ, Osetsky YN: ‘Multiscale modelling of radiation damage in metals: from defect generation to material properties’, Mater. Sci. Eng. A, 2004, A365, (1–2), 46–56.
  • Gao F, Bacon DJ, Flewitt PEJ, Lewis TA: ‘A molecular dynamics study of temperature effects on defect production by displacement cascades in alpha-iron’, J. Nucl. Mater., 1997, 249, (1), 77–86.
  • Suryanarayana C: ‘Nanocrystalline materials’, Int. Mater. Rev., 1995, 40, (2), 41–64.
  • Lu K: ‘Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties’, Mater. Sci. Eng. R, 1996, R16, (4), 161–221.
  • Ma E, Wang YM, Lu QH, Sui ML, Lu L, Lu K: ‘Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper’, Appl. Phys. Lett., 2004, 85, (21), 4932–4934.
  • Kumar KS, Van Swygenhoven H, Suresh S: ‘Mechanical behavior of nanocrystalline metals and alloys’, Acta Mater., 2003, 51, (19), 5743–5774.
  • Dao M, Lu L, Shen YF, Suresh S: ‘Strength: strain-rate sensitivity and ductility of copper with nanoscale twins’, Acta Mater., 2006, 54, (20), 5421–5432.
  • Shilkrot LE, Miller RE, Curtin WA: ‘Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics’, J. Mech. Phys. Solids, 2004, 52, (4), 755–787.
  • Mishin Y, Suzuki A, Uberuaga BP, Voter AF: ‘Stick-slip behavior of grain boundaries studied by accelerated molecular dynamics’, Phys. Rev. B, 2007, 75B, (22).
  • Martini A, Dong YL, Perez D, Voter AF: ‘Low-speed atomistic simulation of stick-slip friction using parallel replica dynamics’, Tribol. Lett., 2009, 36, (1), 63–68.
  • Perez D, Dong YL, Martini A, Voter AF: ‘Rate theory description of atomic stick-slip friction’, Phys. Rev. B, 2010, 81B, (24), 6.
  • Erdogan F: ‘Fracture mechanics’, Int. J. Solid. Struct., 2000, 37, (1–2), 171–183.
  • Rountree CL, Kalia RK, Lidorikis E, Nakano A, Van Brutzel L, Vashishta P: ‘Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations’, Annu. Rev. Mater. Res., 2002, 32, 377–400.
  • Griffith AA: ‘The phenomena of rupture and flow in solids’, Phil. Trans. R. Soc. Lond. Math. Phys. Sci., 1921, 221, 163–198.
  • Camacho GT, Ortiz M: ‘Computational modelling of impact damage in brittle materials’, Int. J. Solid. Struct., 1996, 33, (20–22), 2899–2938.
  • Uberuaga BP, Smith R, Cleave AR, Montalenti F, Henkelman G, Grimes RW, Voter AF, Sickafus KE: ‘Structure and mobility of defects formed from collision cascades in MgO’, Phys. Rev. Lett., 2004, 92, (11), 115505.
  • Uberuaga BP, Voter AE, Sickafus KE, Cleave A, Grimes RW, Smith R: ‘Structure and mobility of radiation-induced defects in MgO’, J. Comput. Aided Mater. Des., 2007, 14, 183–189.
  • de Gennes P.-G: ‘Scaling concepts in polymer physics’; 1979, New York, Cornell University Press.
  • Strobl G: ‘The physics of polymers: concepts for understanding their structures and behavior’; 1997, Berlin, Springer Verlag,
  • Barbir F: ‘PEM fuel cells: theory and practice’; 2005, San Diego, CA, Elsevier Academic Press.
  • Paddison SJ, Elliott JA: ‘Molecular modeling of the short-side-chain perfluorosulfonic acid membrane’, J. Phys. Chem. A, 2005, 109A, (33), 7583–7593.
  • Paddison SJ, Elliott JA: ‘The effects of backbone conformation on hydration and proton transfer in the ‘short-side-chain’ perfluorosulfonic acid membrane’, Solid State Ion., 2006, 177, (26–32), 2385–2390.
  • Paddison SJ, Elliott JA: ‘On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes’, Phys. Chem. Chem. Phys., 2006, 8, (18), 2193–2203.
  • Paddison SJ, Elliott JA: ‘Selective hydration of the ‘short-side-chain’ perfluorosulfonic acid membrane. An ONIOM study’, Solid State Ion., 2007, 178, (7–10), 561–567.
  • Mauritz KA, Moore RB: ‘State of understanding of Nafion’, Chem. Rev., 2004, 104, (10), 4535–4585.
  • Hussain F, Hojjati M, Okamoto M, Gorga RE: ‘Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: An overview’, J. Compos. Mater., 2006, 40, (17), 1511–1575.
  • Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ: ‘Current issues in research on structure-property relationships in polymer nanocomposites’, Polymer, 2010, 51, (15), 3321–3343.
  • Thostenson ET, Ren ZF, Chou TW: ‘Advances in the science and technology of carbon nanotubes and their composites: a review’, Compos. Sci. Technol., 2001, 61, (13), 1899–1912.
  • Zeng QH, Yu AB, Lu GQ: ‘Multiscale modeling and simulation of polymer nanocomposites’, Prog. Polym. Sci., 2008, 33, (2), 191–269.
  • Bréchet Y, Cavaillé JY, Chabert E, Chazeau L, Dendievel R, Flandin L, Gauthier C: ‘Polymer based nanocomposites: effect of filler-filler and filler-matrix interactions’, Adv. Eng. Mater., 2001, 3, 571–577.
  • Thostenson ET, Chou TW: ‘On the elastic properties of carbon nanotube-based composites: modelling and characterization’, J. Phys. D: Appl. Phys., 2003, 36, (5), 573–582.
  • Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K: ‘Physical interactions at carbon nanotube-polymer interface’, Polymer, 2003, 44, (25), 7757–7764.
  • Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH: ‘Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites’, Compos. Sci. Technol., 2004, 64, (15), 2309–2316.
  • Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF: ‘Critical concentration in percolating systems containing a high-aspect-ratio filler’, Phys. Rev. B, 1996, 53B, (10), 6209–6214.
  • Rahatekar SS, Hamm M, Shaffer MSP, Elliott JA: ‘Mesoscale modeling of electrical percolation in fiber-filled systems’, J. Chem. Phys., 2005, 123, (13), 134702.
  • Rahatekar SS, Shaffer MSP, Elliott JA: ‘Modelling percolation in fibre and sphere mixtures: routes to more efficient network formation’, Compos. Sci. Tech., 2010, 70, (2), 356–362.
  • Andrews R, Weisenberger MC: ‘Carbon nanotube polymer composites’, Curr. Opin. Solid State Mater. Sci., 2004, 8, (1), 31–37.
  • Han Y, Elliott J: ‘Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites’, Comput. Mater. Sci., 2007, 39, (2), 315–323.
  • Pouget E, Dujardin E, Cavalier A, Moreac A, Valery C, Marchi-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F: ‘Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization’, Nat. Mater., 2007, 6, (6), 434–439.
  • Mann S: ‘Molecular tectonics in biomineralization and biomimetic materials chemistry’, Nature, 1993, 365, (6446), 499–505.
  • Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F: ‘Molecular biomimetics: nanotechnology through biology’, Nat. Mater., 2003, 2, (9), 577–585.
  • Weiner S, Wagner HD: ‘The material bone: Structure mechanical function relations’, Annu. Rev. Mater. Sci., 1998, 28, 271–298.
  • Luz GM, Mano JF: ‘Biomimetic design of materials and biomaterials inspired by the structure of nacre’, Phil. Trans. Math. Phys. Eng. Sci., 2009, 367, (1893), 1587–1605.
  • Porter D: ‘Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite’, Mater. Sci. Eng. A, 2004, A365, (1–2), 38–45.
  • Harding JH, Duffy DM, Sushko ML, Rodger PM, Quigley D, Elliott JA: ‘Computational Techniques at the organic–inorganic interface in biomineralization’, Chem. Rev., 2008, 108, (11), 4823–4854.
  • Freeman CL, Harding JH, Quigley D, Rodger PM: ‘Structural control of crystal nuclei by an eggshell protein.’, Angew. Chem., 2010, 49, 5135–5137.
  • Cooke DJ, Elliott JA: ‘Atomistic simulations of calcite nanoparticles and their interaction with water’, J. Chem. Phys., 2007, 127, (10), 104705.
  • Quigley D, Rodger PM: ‘Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization’, J. Chem. Phys., 2008, 128, (22), 221101.
  • Meldrum FC: ‘Calcium carbonate in biomineralisation and biomimetic chemistry’, Int. Mater. Rev., 2003, 48, (3), 187–224.
  • Aizenberg J, Black AJ, Whitesides GM: ‘Control of crystal nucleation by patterned self-assembled monolayers’, Nature, 1999, 398, (6727), 495–498.
  • Quigley D, Rodger PM, Freeman CL, Harding JH, Duffy DM: ‘Metadynamics simulations of calcite crystallization on self-assembled monolayers’, J. Chem. Phys., 2009, 131, (9).
  • Day GM, Motherwell WDS, Ammon HL, Boerrigter SXM, Della Valle RG, Venuti E, Dzyabchenko A, Dunitz JD, Schweizer B, van Eijck BP, Erk P, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Leusen FJJ, Liang C, Pantelides CC, Karamertzanis PG, Price SL, Lewis TC, Nowell H, Torrisi A, Scheraga HA, Arnautova YA, Schmidt MU, Verwer P: ‘A third blind test of crystal structure prediction’, Acta Crystallogr. B, 2005, 61B, 511–527.
  • Alder BJ, Wainwright TE: ‘Phase transitions for a hard sphere system’, J. Chem. Phys., 1957, 27, 1208–1209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.