1,020
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Indentation testing and its acoustic emission response: applications and emerging trends

, &
Pages 98-142 | Published online: 12 Nov 2013

References

  • Hertz H: ‘Über die Berührung fester elastischer Körper’, J Reine Angew. Math., 1881, 92, 156–171.
  • Smith RL, Sandland GE: ‘An accurate method of determining the hardness of metals with particular reference to those of a high degree of hardness’, Inst. Mech. Eng., May 1922, 623–641.
  • Tabor D: ‘The hardness of metals’; 1951, Oxford, Clarendon Press.
  • Westbrook JH, Conrad H: ‘The science of hardness testing and its research applications’; 1973, Metals Park, OH, ASM.
  • Frank FC, Lawn BR: ‘On the theory of Hertzian fracture’, Proc. R. Soc. Lon. A, 1967, 299A, 291–306.
  • Wilshaw TR: ‘The Hertzian fracture test’, J. Phys. D: Appl. Phys., 1971, 4D, 1567–1583.
  • Lawn BR, Wilshaw R: ‘Review – indentation fracture: principles and applications’, J. Mater. Sci., 1975, 10, 1049–1081.
  • Lawn BR, Swain MV: ‘Microfracture beneath point indentations in brittle solids’, J. Mater. Sci., 1975, 10, 113–122.
  • Studman CJ, Field JE: ‘The indentation behaviour of hard metals’, J. Phys. D: Appl. Phys., 1976, 9D, 857–867.
  • Lawn BR, Evans AG: ‘A model for crack initiation in elastic/plastic indentation fields’, J. Mater. Sci., 1977, 12, 2195–2199.
  • Hagan JT, Swain MV: ‘The origin of median and lateral cracks around plastic indents in brittle materials’, J. Phys. D: Appl. Phys., 1978, 11D, 2091–2110.
  • Lawn BR, Howes VR: ‘Elastic recovery at hardness indentations’, J. Mater. Sci., 1981, 16, 2745–2752.
  • Yoffe EH: ‘Elastic stress fields caused by indenting brittle materials’, Philos. Mag. A, 1982, 46A, 617–628.
  • Lawn BR: ‘Fracture of brittle solids’, Cambridge Solid State Science Series, 2nd edn; 1993, Cambridge, Cambridge University Press.
  • Lawn BR, Fuller ER: ‘Equilibrium penny‐like cracks in indentation fracture’, J. Mater. Sci., 1975, 10, 2016–2024.
  • Lankford J, Davidson DL: ‘The crack‐initiation threshold in ceramic materials subject to elastic/plastic indentation’, J. Mater. Sci., 1979, 14, 1662–1668.
  • Lankford J: ‘Indentation microfracture in Plamqvist crack regimes: implications for fracture toughness evaluation by the indentation method’, J. Mater. Sci. Lett., 1982, 1, 493–495.
  • Nihara K, Morena R, Hasselman DP: ‘Evaluation of K1c of brittle solids by the indentation method with low crack‐to‐indent ratios’, J. Mater. Sci. Lett., 1982, 1, 13–16.
  • Chiang SS, Marshall DB, Evans AG: ‘The response of solids to elastic/plastic indentation. I. Stresses and residual stresses’, J. Appl. Phys., 1982, 53, 298–311.
  • Chiang SS, Marshall DB, Evans AG: ‘The response of solids to elastic/plastic indentation. II. Fracture initiation’, J. Appl. Phys., 1982, 53, 312–317.
  • Nihara K: ‘A fracture mechanics analysis of indentation‐induced Palmqvist crack in ceramics’, J. Mater. Sci. Lett., 1983, 2, 221–223.
  • Nihara K, Morena R, Hasselman DP: ‘Evaluation of KIc of brittle solids by the indentation method with low crack‐to‐indent ratios’, J. Mater. Sci. Lett., 1982, 1, 13–16.
  • Shetty DK, Wright IG, Mincer PN, Clauer AH: ‘Indentation fracture of WC–Co cermets’, J. Mater. Sci., 1985, 20, 1873–1882.
  • Ponton CB, Rawlings RD: ‘Vickers indentation fracture toughness test: Part 1. Review of literature and formulation of standardised indentation toughness equations’, Mater. Sci. Technol., 1989, 5, 865–872.
  • Ponton CB, Rawlings RD: ‘Vickers indentation fracture toughness test: Part 2. Application and critical evaluation of standardised indentation toughness equations’, Mater. Sci. Technol., 1989, 5, 961–976.
  • Liang KM, Orange G, Fantozzi G: ‘Evaluation by indentation of fracture toughness of ceramic materials’, J. Mater. Sci., 1990, 25, 207–214.
  • Anya CC, Roberts SG: ‘Indentation fracture toughness and surface flaw analysis of sintered alumina/SiC nanocomposites’, J. Eur. Ceram. Soc., 1996, 16, 1107–1114.
  • Tanaka M: ‘Fracture toughness and crack morphology in indentation fracture of brittle materials’, J. Mater. Sci., 1996, 31, 749–755.
  • Quinn GD, Bradt RC: ‘On the Vickers indentation fracture toughness test’, J. Am. Ceram. Soc., 2007, 90, 673–680.
  • Chaudhri MM, Phillips MA: ‘Quasi‐static indentation of thermally tempered soda‐lime glass with spherical and Vickers indenters’, Philos. Mag. A, 1990, 62A, 1–27.
  • Zeng K, Giannakopoulos AE, Rowcliffe DJ: ‘Vickers indentations in glass‐II. Comparison of finite element analysis and experiments’, Acta Metall. Mater., 1995, 43, 1945–1954.
  • Boyarskaya YuS, Zhitaru RP, Grabko DZ, Rahalov VA: ‘Prolonged plastic deformation related to the micro‐indentation of MgO single crystal’, J. Mater. Sci., 1998, 33, 281–285.
  • Zidi M, Carpentier L, Chateauminois A, Sidoroff F: ‘Quantitative analysis of the micro‐indentation behaviour of fibre‐reinforced composites: development and validation of an analytical model,’ Compos. Sci. Technol., 2000, 60, 429–437.
  • Shen Y.‐L, Williams JJ, Piotrowski G, Chawla N, Guo YL: ‘Correlation between tensile and indentation behaviour of particle‐reinforced metal matrix composites: an experimental and numerical study’, Acta Mater., 2001, 49, 3219–3239.
  • Bucaille JL, Rossoll A, Moser B, Stauss S, Michler J: ‘Determination of the matrix in situ flow stress of a continuous fibre reinforced metal matrix composite using instrumented indentation’, Mater. Sci. Eng. A, 2004, A369, 82–92.
  • Ostojic P, McPherson R: ‘Indentation toughness testing of plasma sprayed coatings,’ Mater. Forum, 1987, 10, 247–255.
  • Leigh SH, Lin CK, Berndt CC: ‘Elastic response of thermal spray deposits under indentation tests’, J. Am. Ceram. Soc., 1993, 80, 2093–2099.
  • Lin CK, Lin CC, Berndt CC: ‘Simulation of hardness on plasma‐sprayed coatings’, J. Am. Ceram. Soc., 1995, 78, 1406–1410.
  • Lin CK, Berndt CC: ‘Statistical analysis of microhardness variations in thermal spray coatings’, J. Mater. Sci., 1995, 30, 111–117.
  • Pajares A, Wei L, Lawn BR, Padture NP, Berndt CC: ‘Mechanical charaterization of plasma sprayed ceramic coatings on metal substrate by contact testing’, Mater. Sci. Eng. A, 1996, A208, 158–165.
  • Nygards CM, White KW, Ravi‐Chandar K: ‘Strength of HVOF coating–substrate interface’, Thin Solid Film, 1998, 332, 185–188 (US Patent 6,581,446 B1, 2003.
  • Cantera EL, Mellor BG: ‘Fracture toughness and crack morphologies in eroded WC–Co–Cr thermally sprayed coatings’, Mater. Lett., 1998, 37, 201–210.
  • Factor M, Roman I: ‘Microhardness as a simple means of estimating relative wear resistance of carbide thermal spray coatings: Part 1. Wear resistance of cemented carbide coatings’, J. Therm. Spray Technol., 2002, 11, 468–481.
  • Factor M, Roman I: ‘Use of microhardness as a simple means of estimating relative wear resistance of carbide thermal spray coatings: Part 2. Wear resistance of cemented carbide coatings’, J. Therm. Spray Technol., 2002, 11, 482–495.
  • Lesage J, Chicot D: ‘Role of residual stresses on interface toughness of thermally sprayed coatings’, Thin Solid Films, 2002, 415, 143–150.
  • Ghosh S, Das S, Bandyopadhyay TK, Bandyopadhyay PP, Chattopadhyay AB: ‘Indentation responses of plasma sprayed ceramic coatings’, J. Mater. Sci., 2003, 38, 1565–1572.
  • Lima MM, Godoy C, Avelar‐Batista JC, Modenesi PJ: ‘Toughness evaluation of HVOF WC–Co coatings using non‐linear regression analysis’, Mater. Sci. Eng. A, 2003, A357, 337–345.
  • Lima MM, Godoy C, Modenesi PJ, Avelar‐Batista JC, Davison A, Matthews A: ‘Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings’, Surf. Coat. Technol., 2004, 177–178, 489–496.
  • Liu G, Mouftiez A, Robin C, Panier S, Lesage J: ‘Evaluation of interfacial adhesive toughness by simulation of crack propagation in interfacial indentation test’, Proc. Int. Thermal Spray Conf. and Expo. (ITSC’05), Basel, Switzerland, May 2005, DVS, 139–144.
  • Stoica V, Ahmed R, Itsukaichi T: ‘Influence of heat‐treatment on the sliding wear of thermal spray cermet coatings’, Surf. Coat. Technol., 2005, 199, 7–21.
  • Marshall DB, Evans AG: ‘Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination’, J. Appl. Phys., 1984, 56, 2632–2638.
  • Rossington C, Evans AG, Marshall DB, Khuri‐Yakub BT: ‘Measurement of adherence of residually stressed thin films by indentation. II. Experiments with ZnO/Si’, J. Appl. Phys., 1984, 56, 2639–2644.
  • Chicot D, Lesage J: ‘Absolute hardness of films and coatings’, Thin Solid Films, 1995, 254, 123–130.
  • Chechenin NG: ‘A ‘hydrostatic core’ model of elastic deformations in an indented film/substrate system’, Thin Solid Films, 1997, 304, 78–84.
  • Korsunsky AM, McGurk MR, Bull SJ, Page TF: ‘On the hardness of coated systems’, Surf. Coat. Technol., 1998, 99, 171–183.
  • Hainsworth SV, McGurk MR, Page TF: ‘The effect of coating cracking on the indentation response of thin hard‐coated systems’, Surf. Coat. Technol., 1998, 102, 97–107.
  • Suresh S, Nieh T.‐G, Choi BW: ‘Nano‐indentation of copper thin films on silicon substrates’, Scr. Mater., 1999, 41, 951–957.
  • Zhang S, Sun D, Fu Y, Du H: ‘Recent advances of superhard nanocomposite coatings‐a review’, Surf. Coat. Technol., 2003, 167, 113–119.
  • Zhang S, Sun D, Fu Y, Du H: ‘Toughness measurement of thin films: a critical review’, Surf. Coat. Technol., 2005, 198, 74–84.
  • Berasategui EG, Page TF: ‘The contact response of thin SiC‐coated silicon systems – characterisation by nanoindentation’, Surf. Coat. Technol., 2003, 163–164, 491–498.
  • Gouldstone A, Koh H.‐J, Zeng K.‐Y, Giannakopoulos AE, Suresh S: ‘Discrete and continuous deformation during nanoindentation of thin films’, Acta Mater., 2000, 48, 2277–2295.
  • Chai H: ‘Transverse fracture in thin‐film coatings under spherical indentation’, Acta Mater., 2005, 53, 487–498.
  • Cao Y, Allameh S, Nankivil D, Sethiaraj S, Otiti T, Soboyejo W: ‘Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness’, Mater. Sci. Eng. A, 2006, A427, 232–240.
  • Jayaram V, Bhowmick S, Xie Z.‐H, Math S, Hoffman M, Biswas SK: ‘Contact deformation of TiN coatings on metallic substrates’, Mater. Sci. Eng. A, 2006, A423, 8–13.
  • Galvan D, Pei YT, de. Hosson JThM: ‘Deformation and failure mechanism of nano‐composite coatings under nano‐indentation’, Surf. Coat. Technol., 2006, 200, 6718–6727.
  • Li X, Bhushan B: ‘A review of nanoindentation continuous stiffness measurement technique and its application’, Mater. Charact., 2002, 48, 11–36.
  • Evans AG: ‘Residual stress measurement using acoustic emission’, J. Am. Ceram. Soc., 1975, 58, 239–243.
  • Lankford J: ‘Compressive microfracture and indentation damage in Al2O3’, Fract. Mech. Ceram., 1978, 3, 245–255.
  • Scruby CB: ‘An introduction to acoustic emission’, J. Phys. E: Sci. Instrum., 1987, 20E, 946–953.
  • Bhushan B, Li X: ‘Nanomechanical characterization of solid surfaces and thin films’, Int. Mater. Rev., 2003, 48, 125–164.
  • Raj B, Moorthy V, Jayakumar T, Rao KBS: ‘Assessment of microstructures and mechanical behaviour of metallic materials through non‐destructive characterisation’, Int. Mater. Rev., 2003, 48, 273–325.
  • ASNT: ‘Nondestructive testing handbook’, 3rd edn, Vol. 6, ‘Acoustic Emission Testing’; 2005, Columbus, OH, ASNT.
  • Stone DEW, Dingwall PF: ‘Acoustic emission parameters and their interpretation,’ NDT Int., 1977, 51–62.
  • Pao Y‐.H: ‘Theory of acoustic emission’, Elast. Waves Non‐destr. Test. Mater., 1978, 29, 107–128.
  • Gorman MR: ‘Acoustic emission for the 1990’s’, Proc. Ultrasonics Symp., Orlando, FL, USA, December 1991, IEEE, 1039–1046.
  • Gorman MR: ‘Plate wave acoustic emission’, J. Acoust. Soc. Am., 1991, 90, 358–364.
  • Lysak MV: ‘Development of the theory of acoustic emission by propagating cracks in terms of fracture mechanics’, Eng. Fract. Mech., 1996, 55, 443–452.
  • Reuben RL: ‘The role of acoustic emission in industrial condition monitoring’, Int. J. COMADEM, 1998, 1, 35–46.
  • Andreykiv OY, Lysak MV, Serhiyenko OM, Skalsky VR: ‘Analysis of acoustic emission caused by internal cracks’, Eng. Fract. Mech., 2001, 68, 1317–1333.
  • Polyzos B, Trochidis A: ‘Dislocation dynamics and acoustic emission during plastic deformation of crystals’, Wave Motion, 1994, 21, 343–355.
  • Voronenko BI: ‘Acoustic emission during phase transformations in alloys’, Mater. Sci. Heat Treat., 1982, 24, (8), 545–553.
  • Mukhopadhyay NK, Paufler P: ‘Micro‐ and nanoindentation techniques for mechanical characterisation of materials’, Int. Mater. Rev., 2006, 51, 209–245.
  • Hill R: ‘The mathematical theory of plasticity’; 1950, Oxford, Clarendon Press.
  • Johnson KL: ‘Contact mechanics’; 1987, Cambridge, Cambridge University Press.
  • Chen LH, Huang KC, Chen YC: ‘Acoustic emission at wedge indentation fracture in quasi‐brittle materials’, J. Mech., 2009, 25, 213–223.
  • Griffith AA: ‘The phenomena of rupture and flow in solids’, Philos. Trans.: R. Soc. Lon. A, 1920, 221A, 163–198.
  • Roberts SG: ‘Hertzian testing of ceramics’, Br. Ceram. Proc., 1999, 59, 45–60.
  • Buang AP, Liu R, Wu XJ, Yao MX: ‘Cracking analysis of HVOF coatings under Vickers indentation’, J. Coat. Technol. Res., 2008, 5, 513–534.
  • VanLandingham MR: ‘Review of instrumented indentation’, J. Res. Natl. Inst. Stand. Technol., 2003, 108, 249–265.
  • Oliver WC, Pharr GM: ‘Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology’, J. Mater. Res., 2004, 19, 1–20.
  • Oyena ML, Cook RF: ‘A practical guide for analysis of nanoindentation data’, J. Mech. Behav. Biomed. Mater., 2009, 2, 396–407.
  • BSI: ‘Metallic materials – instrumented indentation test for hardness and materials parameters – Part 1: Test method’, BS EN ISO 14577‐1 BSI, London, UK, 2002.
  • Quinn GD, Patel PJ, Lloyd I: ‘Effect of loading rate upon conventional ceramic microindentation hardness’, J. Res. Natl. Inst. Stand. Technol., 2002, 107, 299–306.
  • Vriend NM, Kren AP: ‘Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method’, Polym. Test., 2004, 23, 369–375.
  • Oliver WC, Pharr GM: ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, J. Mater. Res., 1992, 7, 1564–1583.
  • Jungk JM, Boyce BL, Buchheit TE, Friedmann TA, Yang D, Gerberich WW: ‘Indentation fracture toughness and acoustic energy release in tetrahedral amorphous carbon diamond‐like thin films’, Acta Mater., 2006, 54, 4043–4052.
  • Bahr DF, Gerberich WW: ‘Relationships between acoustic emission signals and physical phenomena during indentation’, J. Mater. Res., 1998, 13, 1065–1074.
  • Weihs TP, Lawrence CW, Derby B, Scruby CB, Pethica J‘Acoustic emission during indentation tests’ in ‘Thin films: stresses and mechanical properties III’, , Nix W D, et al..), Vol. 239, 361–366; 1992, Pittsburgh, PA, Materials Research Society.
  • Bouras S, Zerizer I, Gheldane F, Bouazza MT, Bouzabata B: ‘Study of the resistance to crack propagation in alumina by acoustic emission’, Ceram. Int., 2008, 34, 1857–1865.
  • Bouras S, Bouzabata B: ‘Study of Hertzian indentation on a transparent vitroceramic and on an alumina’, Mater. Chem. Phys., 1996, 43, 127–134.
  • Usami H, Kadomae T, Igimi D, Mizuno M: ‘Effect of indenter materials on indentation fracture of alumina ceramics’, Key Eng. Mater., 2005, 290, 23–30.
  • Xiaoli Z, Chongmin W, Hongtu Z: ‘Fracture toughness and acoustic emission in silicon carbide’, J. Mater. Sci. Lett., 1987, 6, 1459–1462.
  • Bergner F: ‘High‐frequency acoustic emission induced by indentation fracture in brittle materials’, Acustica, 1996, 82, 498–503.
  • Kapoor K, Ahmad A, Laksminarayana A, Hemanth Rao GVS: ‘Fracture properties of sintered UO2 ceramic pellets with duplex microstructure’, J. Nucl. Mater., 2007, 366, 87–98.
  • Akbari J, Saito Y, Hanaoka T, Enomoto S: ‘Acoustic emission and deformation mode in ceramics during indentation’, JSME Int. J. Ser A: Mech. Mater. Eng., 1994, 37A, 488–494.
  • Ray AK, Das G, Mukhopadhyay NK, Bhattacharya DK, Dwarakadasa ES, Parida N: ‘Studies on indentation fracture toughness on ceramic and ceramic composite using acoustic emission technique’, Bull. Mater. Sci., 1999, 22, 25–32.
  • Ahn SH, Nam KW, Ando K: ‘The bending strength of brittle materials and the characteristics of the elastic wave signal by Vickers indentation’, Key Eng. Mater., 2004, 261–263, 1635–1641.
  • Yurkov AL, Breval E, Bradt RC: ‘Cracking during indentation in sialon‐based ceramics: kinetic microhardness and acoustic emission’, J. Mater. Sci. Lett., 1996, 15, 987–990.
  • Guiberteau F, Padture NP, Lawn BR: ‘Effect of grain size on Hertzian contact damage in alumina’, J. Am. Ceram. Soc., 1994, 77, 1825–1831.
  • Swain MV, Wittling M: ‘Comparison of acoustic emission from pointed and spherical indentation of TiN films on silicon and sapphire’, Surf. Coat. Technol., 1995, 76–77, 528–533.
  • Latella BA, Liu T, Atanacio AJ: ‘Effect of grain size on Hertzian contact damage in 9 mol% Ce–TZP ceramics’, J. Eur. Ceram. Soc., 2002, 22, 1971–1979.
  • Lankford J, Davidson DL: ‘The crack‐initiation threshold in ceramic materials subject to elastic/plastic indentation’, J. Mater. Sci., 1979, 14, 1662–1668.
  • Zhitaru RP, Rahvalov VA: ‘Peculiarities of prolonged plastic deformation of MgO crystals in the stress field of concentrated load’, Mater. Sci. Eng. B, 2003, B98, 94–98.
  • Breval E, Srikanth V, Subbarao EC: ‘Acoustic emission and microcracking in sapphire, sintered Al2O3, Al/Al2O3 composite and aluminum’, J. Am. Ceram. Soc., 1995, 78, 2541–2544.
  • Dyjak P, Singh RP: ‘Acoustic emission analysis of nanoindentation‐induced fracture events’, Exp. Mech., 2006, 46, 333–345.
  • Tymiak NI, Daugela A, Wyrobek JT, Warren OL: ‘Highly localized acoustic emission monitoring of nanoscale indentation contacts’, J. Mater. Res., 2003, 18, 784–796.
  • Tymiak NI, Daugela A, Wyrobek JT, Warren OL: ‘Acoustic emission monitoring of nanoindentation‐induced slip and twinning in sapphire’, Mater. Res. Soc. Symp. Proc. 2003, 750, Y2.3.1–Y2.3.6.
  • Tymiak NI, Daugela A, Wyrobek TJ, Warren OL: ‘Acoustic emission monitoring of the earliest stages of contact‐induced plasticity in sapphire’, Acta Mater., 2004, 52, 553–563.
  • Kim KY, Sachse W: ‘Characteristics of acoustic emission signals of Hertzian and unloading cracks in glass’, J. Appl. Phys., 1984, 55, 2847–2856.
  • Lee SH, Kim HC: ‘Acoustic emission during indentation fracture of soda‐lime glass’, J. Mater. Sci. Lett., 1984, 3, 907–910.
  • Tanikella BV, Scatterwood RO: ‘Acoustic emission during indentation fracture’, J. Am. Ceram. Soc., 1995, 78, 698–702.
  • Kim KY, Sachse W: ‘Acoustic emission from penny‐shaped cracks in glass. I. Radiation pattern and crack orientation’, J. Appl. Phys., 1986, 59, 2704–2710.
  • Kim KW, Sachse W: ‘Acoustic emissions from penny‐shaped cracks in glass. II. Moment tensor and source–time function’, J. Appl. Phys., 1986, 59, 2711–2715.
  • Usami H, Ohashi K, Sasaki S, Sugishita J: ‘Cracking behavior of fused silica glass in sphere indentation’, JSME Int. J. Ser. A: Solid Mech. Mater. Eng. Soc. Mech. Eng., 2003, 46A, 415–418.
  • Usami H, Sugishita J, Kanie H, Ohashi K: ‘In‐situ observation of Hertzian cracks in indentation damage of brittle materials’, Key Eng. Mater., 2002, 223, 39–46.
  • Kent RJ, Puttick KE, Rider JG: ‘Indentation fracture testing of polystyrene injection mouldings’, Plast. Rubber Process. Appl., 1981, 1, 55–61.
  • Wang Y, Darvell BW: ‘Failure mode of dental restorative materials under Hertzian indentation’, Dent. Mater., 2007, 23, 1236–1244.
  • Yang YC, Han KS: ‘Damage monitoring and impact detection using optical fiber vibration sensors’, Smart Mater. Struct., 2002, 11, 337–345.
  • Kawaguchi T, Nishimura H, Ito K, Sorimachi H, Kuriyama T, Narisawa I: ‘Impact fatigue properties of glass fiber‐reinforced thermoplastics’, Compos. Sci. Technol., 2004, 64, 1057–1067.
  • Baudin C, Cambier F, Delaey L: ‘Fractographic and acoustic emission of mullite–alumina–zirconia composites prepared by reaction sputtering’, J. Mater. Sci., 1987, 22, 4398–4402.
  • Form PS, Pyrz R, Clausen B, Nielsen EØ: ‘Indentation and acoustic emission in filtration processed platelet reinforced ceramics’, Mater. Sci. Eng. A, 1995, A197, 231–236.
  • Cesari F, dal Re V, Minak G, Zucchelli A: ‘Damage and residual strength of laminated carbon–epoxy composite circular plates loaded at the centre’, Composites Part A, 2007, 38A, 1163–1173.
  • Rouby D, Osmani H: ‘Characterization of interface debonding in a ceramic‐ceramic fibre composite using the indentation method and acoustic emission’, J. Mater. Sci. Lett., 1998, 7, 1154–1156.
  • Netravali AN, Topoleski LTT, Sachse WH, Phoenix SL: ‘An acoustic emission technique for measuring fiber fragment length distributions in the single fiber‐composite test’, Compos. Sci. Technol., 1989, 35, 13–29.
  • Yang YC, Han KS: ‘Damage and failure monitoring of fiber–metals laminates using optical fiber sensors’, Key Eng. Mater., 2004, 270–273, 690–695.
  • Girodin D, Manes L, Moraux J.‐Y, de Monicault J.‐M: ‘Characterisation of the XD15N high nitrogen martensitic stainless steel for aerospace bearings’, Proc. 4th Int. Conf. on ‘Launcher technology’: ‘Space launcher liquid propulsion’, Liege, Belgium, December 2002, Swiss Propulsion Laboratory (SPL).
  • Manes L, de Monicault J.‐M, Gras R: ‘Monitoring damage by acoustic emission in bearing steels in cryogenic environment,’ Tribol. Int., 2001, 34, 247–253.
  • Clough RB, Simmons JA: ‘Reproducible acoustic emission signatures by indentation in steels’, Mater. Eval., 1981, 39, 1026–1031.
  • Kádár C, Chmelik F, Lendvai J, Babcsan N, Rajkovits Z: ‘Acoustic emission response of metcomb foams during indentation’, Kovové Mater., 2004, 42, 265–274.
  • Kadar C, Chmelik F, Rajkovits Z, Lendvai J: ‘Acoustic emission measurement on metal foams’, J. Alloys Compd, 2004, 378, 145–150.
  • Shiwa M, Weppelmann ER, Bendeli A, Swain MV, Munz D, Kishi T: ‘Acoustic emission and precision force–displacement observations of spherical indentations into TiN films on silicon’, Surf. Coat. Technol., 1994, 68–69, 598–602.
  • Tanikella BV, Gruss KA, Davis RF, Scatterwood RO: ‘Indentation and microcutting fracture damage in a silicon carbide coating on an Incoloy substrate’, Surf. Coat. Technol., 1996, 88, 119–126.
  • Ikeda R, Hayashi M, Yonezu A, Ogawa T, Takemoto M: ‘Fracture observation of polycrystalline diamond film under indentation test’, Diamond Relat. Mater., 2004, 13, 2024–2030.
  • Yonezu A, Cho H, Ogawa T, Takemeto M: ‘Advanced indentation technique for strength evaluation of hard thin film’, Sci. Technol. Adv. Mater., 2006, 7, 97–103.
  • Yonezu A, Ogawa T, Takemoto M: ‘Evaluations of elasto‐plastic properties and fracture strength using indentation technique’, Key Eng. Mater., 2007, 353–358, 2223–2226.
  • Daugela A, Wyrobek JT: ‘Thin film characterization by acoustic emission monitoring of nanoindentation’, Proc. IEEE Int. Magnetics Conf., Toronto, Ont., Canada, April 2000, IEEE Magnetics Society, 581.
  • Ma X.‐G, Komvopoulos K, Bogy DB: ‘Nanoindentation of polycrystalline silicon‐carbide thin films studied by acoustic emission’, Appl. Phys. Lett., 2004, 85, 1695–1697.
  • Tsukamoto Y, Kuroda H, Sato A, Yamaguchi H: ‘Microindentation adhesion tester and its application to thin films’, Thin Solid Films, 1992, 213, 220–225.
  • Belmonte M, Fernandes AJS, Costa FM, Oliveira FJ, Silva RF: Diamond Relat. Mater., 2003, 12, 733–737.
  • Amraval M, Oliveira FJ, Belmonte M, Fernandes AJS, Costa FM, Silva RF: ‘Tailored Si3N4 ceramic substrates for CVD diamond coating’, Surf. Eng., 2003, 19, 410–416.
  • von Stebut J, Lapostolle F, Bucsa M, Vallen H: ‘Acoustic emission monitoring of single cracking events and associated damage mechanism analysis in indentation and scratch testing’, Surf. Coat. Technol., 1999, 116–119, 160–171.
  • Walter M, Nekkanty S, Cooke E, Doll G: ‘Instrumented‐indentation for mechanical characterisation of boron carbide nano‐composite coatings’, Mater. Res. Soc. Symp. Proc., 2002, 697, P2.8.1–P2.8.6.
  • Fan QH, Gracio J, Pereira E: ‘Comparison of the adhesion of diamond coatings using indentation tests and micro‐Raman spectroscopy’, J. Appl. Phys., 1999, 86, 5509–5514.
  • Fan QH, Gracio J, Ali N, Pereira E: ‘Comparison of the adhesion of diamond film deposited on different materials’, Diamond Relat. Mater., 2001, 10, 797–802.
  • Senturk U, Lima RS, Lima CRC, Berndt CC: ‘Deformation of plasma sprayed thermal barrier coatings’, Trans. ASME, J. Eng. Gas Turb. Power, 2000, 122, 387–392.
  • Ajit Prasad SL, Mayuram MM, Krishnamurthy R: ‘Response of plasma‐sprayed alumina–titania composites to static indentation process’, Mater. Lett., 1999, 41, 234–240.
  • Vijayakumar K, Sharma AK, Mayuram MM, Krishnamurthy R: ‘Response of plasma‐sprayed alumina–titania ceramic composite to high‐frequency impact loading’, Mater. Lett., 2002, 54, 403–413.
  • Faisal NH, Steel JA, Ahmed R, Reuben RL: ‘The use of acoustic emission to characterize fracture behavior during Vickers indentation of HVOF thermally sprayed WC–Co coatings’, J. Therm. Spray Technol., 2009, 18, 525–535.
  • Safai S, Herman H, Ono K: ‘Acoustic emission study of thermal‐sprayed oxide coatings’, Am. Ceram. Soc. Bull., 1979, 58, 624.
  • Faisal NH: ‘Acoustic emission analysis for quality assessment of thermally sprayed coatings’, PhD thesis, Heriot‐Watt University, Edinburgh, UK, 2009.
  • Berndt CC: ‘Failure processes within ceramic coatings at high temperatures’, J. Mater. Sci., 1989, 24, 3511–3520.
  • Jang J.‐I: ‘Estimation of residual stress by instrumented indentation: a review’, J. Ceram. Process. Res., 2009, 10, 391–400.
  • Huber N, Heerens J: ‘On the effect of a general residual stress state on indentation and hardness testing’, Acta Mater., 2008, 56, 6205–6213.
  • Withers PJ, Bhadeshia HKDH: ‘Residual stress. Part 1 – Measurement techniques’, Mater. Sci. Technol., 2001, 17, 355–365.
  • Withers PJ, Bhadeshia HKDH: ‘Residual stress. Part 2 – Nature and origins’, Mater. Sci. Technol., 2001, 17, 366–375.
  • Xu ZH, Li XD: ‘Influence of equi‐biaxial residual stress on unloading behaviour of nanoindentation’, Acta Mater., 2005, 53, 1913–1919.
  • Li XD, Bhushan B: ‘Development of a nanoscale fatigue measurement technique and its application to ultrathin amorphous carbon coatings’, Scr. Mater., 2002, 47, 473–479.
  • Xu B, Yonezu A, Chen X: ‘An indentation fatigue strength law’, Philos. Mag. Lett., 2010, 90, 313–322.
  • Padture NP, Lawn BR: ‘Contact fatigue of a silicon carbide with a heterogeneous grain structure’, J. Am. Ceram. Soc., 1995, 78, 1431–1438.
  • Beake BD, Garcia MJI, Smith JF: ‘Micro‐impact testing: a new technique for investigating fracture toughness’, Thin Solid Films, 2001, 398–399, 438–443.
  • Beake BD, Lau SP, Smith JF: ‘Evaluating the fracture properties and fatigue wear of tetrahedral amorphous carbon films on silicon by nano‐impact testing’, Surf. Coat. Technol., 2004, 177–178, 611–615.
  • Li XD, Bhushan B: ‘Micro/nanomechanical and tribological studies of bulk and thin‐film materials used in magnetic recording heads’, Thin Solid Films, 2001, 398, 313–319.
  • Taniyama Y, Cho H, Takemoto M, Nakayama G: ‘Characterisation of titanium hydrides using a hybrid technique of AE and FEM during indentation test’, Proc. 6th Int. Conf. on ‘Acoustic emission’ (ICAE/AEWG‐50): ‘Advances in acoustic emission’, Lake Tahoe, NV, USA, October–November 2007, AEWG, 366–371.
  • Netravali AN, Stone D, Rouff S, Topoleski LTT: ‘Continuous micro‐indenter push‐through technique for measuring interfacial shear strength of fiber composites’, Compos. Sci. Technol., 1989, 34, 289–303.
  • Ali N, Fan QH, Gracio J, Pereira E, Ahmed W: ‘A comparison study of diamond adhesion on ductile metals’, Thin Solid Films, 2000, 377–378, 193–197.
  • Hamstad MA, O’Gallagher A, Gary J: ‘Effects of lateral plate dimensions on acoustic emission signals from dipole sources’, J. Acoust. Emiss., 2001, 19, 258–274.
  • Lee CK, Wilcox PD, Drinkwater BW, Scholey JJ, Winsom MR, Friswell MI: ‘Acoustic emission during fatigue crack growth in aluminium plates’, Proc. Conf. ECNDT 2006, Berlin, Germany, September 2006, NDT, Mo.2.1.5, 1–8.
  • BSI: ‘Advanced technical ceramics – mechanical properties of monolithic ceramics at room temperature; Part 4: Vickers, Knoop and Rockwell superficial hardness tests’, DD ENV 843‐4, BSI, London, UK1995.
  • BSI: ‘Metallic materials – Vickers hardness test’, BS EN ISO 6507‐1, 2, 3, BSI, London, UK, 1998.
  • ASTM International: ‘Standard test method for Vickers hardness of metallic materials’, E92‐1982, ASTM International, West Conshohocken, PA, USA, 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.