968
Views
16
CrossRef citations to date
0
Altmetric
Full Critical Review

Mechanical properties of selected nanostructured materials and complex bio-nano, hybrid and hierarchical systems

, &
Pages 167-202 | Published online: 12 Nov 2013

References

  • Barenblatt GI, Monteiro PJM: ‘Scaling laws in nanomechanics’, Phys. Mesomech., 2010, 13, (5–6), 245–248.
  • Buehler MJ, Keten S, Ackbarow T: ‘Theoretical and computational hierarchical nanomechanics of protein materials: deformation and fracture’, Prog. Mater Sci., 2008, 53, (8), 1101–1241.
  • Crocker AG, Flewitt PEJ, Smith GE: ‘Computational modelling of fracture in polycrystalline materials’, Int. Mater. Rev., 2005, 50, (2), 99–125.
  • Duan HL, Wang J, Karihaloo BL: ‘Theory of elasticity at the nanoscale’, Adv. Appl. Mech., 2009, 42, 1–68.
  • Elliott JA: ‘Novel approaches to multiscale modelling in materials science’, Int. Mater. Rev., 2011, 56, (4), 207–225.
  • Mukhopadhyay A, Basu B: ‘Consolidation microstructure property relationships in bulk nanoceramics and ceramic nanocomposites: a review’, Int. Mater. Rev., 2007, 52, (5), 257–288.
  • Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D: ‘Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications’, Acta Mater., 2010, 58, (4), 1152–1211.
  • Sieradzki K, Rinaldi A, Friesen C, Peralta P: ‘Length scales in crystal plasticity’, Acta Mater., 2006, 54, (17), 4533–4538.
  • Zhu T, Li J: ‘Ultra-strength materials’, Prog. Mater Sci., 2010, 55, (7), 710–757.
  • Lin DC, Horkay F: ‘Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond’, Soft Matter, 2008, 4, 669–682.
  • Wang J, Huang Z, Duan H, Yu S, Feng X, Wang G, Zhang W, Wang T: ‘Surface stress effect in mechanics of nanostructured materials’, Acta Mech. Solida Sin., 2011, 24, (1), 52–82.
  • Bhushan B, Palacio M: ‘Nanoindentation techniques and applications in nanotechnology’, Int. Mater. Rev., 2012, 57, to be published.
  • Berg JC: ‘An introduction to interfaces and colloids: the bridge to nanoscience’; 2010, Hackensack, NJ, World Scientific Publishing Co. Pte. Ltd.
  • Goertz MP, Moore NW: ‘Mechanics of soft interfaces studied with displacement-controlled scanning force microscopy’, Prog. Surf. Sci., 2010, 85, (9–12), 347–397.
  • Intarit P, Senjuntichai T, Rajapakse RKND: ‘Dislocations and internal loading in a semi-infinite elastic medium with surface stresses’, Eng. Fract. Mech., 2010, 77, (18), 3592–3603.
  • Yung KC, Wang J, Yue TM: ‘Modeling Young’s modulus of polymer-layered silicate nanocomposites using a modified Halpin–Tsai micromechanical model’, J. Reinf. Plast. Compos., 2006, 25, (8), 847–861.
  • Berg JC: ‘An introduction to interfaces and colloids: the bridge to nanoscience’, 4; 2010, Hackensack, NJ, World Scientific Publishing Co. Pte. Ltd.
  • Shaw DJ: ‘Introduction to colloid and surface chemistry’, 1; 1992, Oxford, Butterworth-Heinemann Ltd.
  • Hunter RJ: ‘Introduction to modern colloid science’, 1–3; 1993, New York, Oxford University Press.
  • Wang XS, Xia R: ‘Size-dependent effective modulus of hierarchical nanoporous foams’, EPL, 2010, 92, (1), 16004.
  • Greer JR: ‘Bridging the gap between computational and experimental length scales: a review on nanoscale plasticity’, Rev. Adv. Mater. Sci., 2006, 13, (1), 59–70.
  • Uchic MD, Shade PA, Dimiduk DM: ‘Plasticity of micrometer-scale single crystals in compression’, Annu. Rev. Mater. Res., 2009, 39, 361–386.
  • Greer JR, de Hosson JTM: ‘Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect’, Prog. Mater Sci., 2011, 56, (6), 654–724.
  • McDowell DL: ‘A perspective on trends in multiscale plasticity’, Int. J. Plast., 2010, 26, (9), 1280–1309.
  • Quaresimin M, Salviato M, Zappalorto M: ‘Strategies for the assessment of nanocomposite mechanical properties’, Composites Part B, 2012, 43B, 2290–2297.
  • Aifantis EC: ‘Deformation and failure of bulk nanograined and ultrafine-grained materials’, Mater. Sci. Eng. A, 2009, A503, (1–2), 190–197.
  • Bieler TR, Eisenlohr P, Roters F, Kumar D, Mason DE, Crimp MA, Raabe D: ‘The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals’, Int. J. Plast., 2009, 25, (9), 1655–1683.
  • Mathew N, Picu RC, Bloomfield M: ‘Concurrent coupling of atomistic and continuum models at finite temperature’, Comput. Methods Appl. Mech. Eng., 2011, 200, (5–8), 765–773.
  • Nair AK, Warner DH, Hennig RG, Curtin WA: ‘Coupling quantum and continuum scales to predict crack tip dislocation nucleation’, Scr. Mater., 2010, 63, (12), 1212–1215.
  • Szefer G, Jasinska D: ‘Modeling of strains and stresses of material nanostructures’, Bull. Pol. Acad. Sci Tech. Sci, 2009, 57, (1), 41–46.
  • Andrievski RA: ‘Size-dependent effects in properties of nanostructured materials’, Rev. Adv. Mater. Sci., 2009, 21, (2), 107–133.
  • Tang S, Greene MS, Liu WK: ‘A variable constraint tube model for size effects of polymer nano-structures’, Appl. Phys. Lett., 2011, 99, (19), 191910–191913.
  • Zhao J, Guo W, Zhang Z, Rabczuk T: ‘Size-dependent elastic properties of crystalline polymers via a molecular mechanics model’, Appl. Phys. Lett., 2011, 99, (24), 241902–241904.
  • Quang HL, He QC: ‘Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases’, J. Mech. Phys. Solids, 2007, 55, (9), 1899–1931.
  • Ab Rahman I, Padavettan V: ‘Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites – a review’, J. Nanomater., 2012, 2012, 132424.
  • Chevigny C, Jouault N, Dalmas F, Boue F, Jestin J: ‘Tuning the mechanical properties in model nanocomposites: influence of the polymer-filler interfacial interactions’, J. Polym. Sci. Part B: Polym. Phys., 2011, 49, (11), 781–791.
  • Kalfus J, Jancar J: ‘Reinforcing mechanisms in amorphous polymer nano-composites’, Compos. Sci. Technol., 2008, 68, (15–16), 3444–3447.
  • Li PJ, Wang QZ, Shi SF: ‘Differential scheme for the effective elastic properties of nano-particle composites with interface effect’, Comp. Mater. Sci., 2011, 50, (11), 3230–3237.
  • Yang S, Yu S, Kyoung W, Han D.-S, Cho M: ‘Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections’, Polymer, 2012, 53, (2), 623–633.
  • Long Y.-Z, Li M.-M, Gu C, Wan M, Duvail J.-L, Liu Z, Fan Z: ‘Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers’, Prog. Polym. Sci., 2011, 36, (10), 1415–1442.
  • Cabrera G, Caicedo JC, Amaya C, Yate L, Muñoz Saldaña J, Prieto P: ‘Enhancement of mechanical and tribological properties in AISI D3 steel substrates by using a non-isostructural CrN/AlN multilayer coating’, Mater. Chem. Phys., 2011, 125, (3), 576–586.
  • Zhang C, Guo YL, Priestley RD: ‘Glass transition temperature of polymer nanoparticles under soft and hard confinement’, Macromolecules, 2011, 44, (10), 4001–4006.
  • Iijima S: ‘Helical microtubules of graphitic carbon’, Nature, 1991, 354, (6348), 56–58.
  • Monthioux M, Kuznetsov VL: ‘Who should be given the credit for the discovery of carbon nanotubes?’, Carbon, 2006, 44, (9), 1621–1623.
  • Alaca BE: ‘Integration of one-dimensional nanostructures with microsystems: an overview’, Int. Mater. Rev., 2009, 54, 245–282.
  • Sadeghian H, Goosen H, Bossche A, Thijsse B, van Keulen F: ‘On the size-dependent elasticity of silicon nanocantilevers: impact of defects’, J. Phys. D: Appl. Phys., 2011, 44, (7), 072001.
  • Song F, Huang GL, Park HS, Liu XN: ‘A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses’, Int. J. Solids Struct., 2011, 48, (14–15), 2154–2163.
  • Chan WK, Li J, Wang Y, Zhang S, Zhang T: ‘Analysis of nanobridge tests’, Acta Mech. Solida Sin., 2010, 23, (4), 283–296.
  • Wagner R, Moon R, Pratt J, Shaw G, Raman A: ‘Uncertainty quantification in nanomechanical measurements using the atomic force microscope’, Nanotechnology, 2011, 22, (45), 455703.
  • Shanmugham S, Jeong J, Alkhateeb A, Aston DE: ‘Polymer nanowire elastic moduli measured with digital pulsed force mode AFM’, Langmuir, 2005, 21, (22), 10214–10218.
  • Chen Y, Dorgan BL, McIlroy DN, Aston DE: ‘On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires’, J. Appl. Phys., 2006, 100, (10), 104301/104301–104301/104307.
  • Chen Y, Stevenson I, Pouy R, Wang L, McIlroy DN, Pounds T, Norton MG, Aston DE: ‘Mechanical elasticity of vapour–liquid–solid grown GaN nanowires’, Nanotechnology, 2007, 18, (13), 135708.
  • Mai W, Wang ZL: ‘Quantifying the elastic deformation behavior of bridged nanobelts’, Appl. Phys. Lett., 2006, 89, (7), 073112.
  • Gangadean D, McIlroy DN, Faulkner BE, Aston DE: ‘Winkler boundary conditions for three-point bending tests on 1D nanomaterials’, Nanotechnology, 2010, 21, (22), 225704.
  • Liu L, Zeng D, Wei X, Chen Q, Li X: ‘Strength analysis of clamping in micro/nano scale experiments’, Acta Mech. Solida Sin., 2009, 22, (6), 584–592.
  • Deng X, Joseph VR, Mai W, Wang ZL, Jeff WCF: ‘Statistical approach to quantifying the elastic deformation of nanomaterials’, Proc. Natl. Acad. Sci. USA, 2009, 106, (29), 11845–11850.
  • Zhan Y, Lu Y, Peng C, Lou J: ‘Solvothermal synthesis and mechanical characterization of single crystalline copper nanorings’, J. Cryst. Growth, 2011, 325, (1), 76–80.
  • Sansoz F, Dupont V: ‘Nanoindentation and plasticity in nanocrystalline Ni nanowires: a case study in size effect mitigation’, Scr. Mater., 2010, 63, (11), 1136–1139.
  • Altenbach H, Eremeyev VA: ‘On the shell theory on the nanoscale with surface stresses’, Int. J. Eng. Sci., 2011, 49, (12), 1294–1301.
  • Wu B, Heidelberg A, Boland JJ: ‘Mechanical properties of ultrahigh-strength gold nanowires’, Nat. Mater., 2005, 4, 525–529.
  • Wu B, Heidelberg A, Boland JJ, Sader JE, Sun X.-M, Li Y.-D: ‘Microstructure-hardened silver nanowires’, Nano Lett., 2006, 6, (3), 468–472.
  • Wang W, Ciselli P, Kuznetsov E, Peijs T, Barber AH: ‘Effective reinforcement in carbon nanotube–polymer composites’, Philos. Trans. R. Soc. A, 2008, 366A, (1870), 1613–1626.
  • Molnar K, Vas LM, Czigany T: ‘Determination of tensile strength of electrospun single nanofibers through modeling tensile behavior of the nanofibrous mat’, Compos. Part B, 2012, 43B, (1), 15–21.
  • Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ: ‘Size dependence of Young’s modulus in ZnO nanowires’, Phys. Rev. Lett., 2006, 96, (7), 075505.
  • Stan G, Ciobanu CV, Parthangal PM, Cook RF: ‘Diameter-dependent radial and tangential elastic moduli of ZnO nanowires’, Nano Lett., 2007, 7, (12), 3691–3697.
  • Kavanagh KL: ‘Misfit dilocations in nanowire heterostructures’, Semicond. Sci. Technol., 2010, 25, (2), 024006.
  • Fu Q, Jin Y, Song X, Gao J, Han X, Jiang X, Zhao Q, Dapeng Y: ‘Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment’, Nanotechnology, 2010, 21, (9), 095703.
  • Hang F, Lu D, Bailey RJ, Jimenez-Palomar I, Stachewicz U, Cortes-Ballesteros B, Davies M, Zech M, Bodefeld C, Barber AH: ‘In situ tensile testing of nanofibers by combining atomic force microscopy and scanning electron microscopy’, Nanotechnology, 2011, 22, (36), 365708.
  • Lu Y, Peng C, Ganesan Y, Huang JY, Lou J: ‘Quantitative in situ TEM tensile testing of an individual nickel nanowire’, Nanotechnology, 2011, 22, (35), 355702.
  • Ishida T, Cleri F, Kakushima K, Mita M, Sato T, Miyata M, Itamura N, Endo J, Toshiyoshi H, Sasaki N, Collard D, Fujita H: ‘Exceptional plasticity of siliocon nanobridges’, Nanotechnology, 2011, 22, (35), 355704.
  • Bai XD, Gao XP, Wang ZL: ‘Dual-mode mechanical resonance of individual ZnO nanobelts’, Appl. Phys. Lett., 2003, 82, (26), 4806–4808.
  • Kobiakov IB: ‘Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures’, Solid State Commun., 1980, 35, 305–310.
  • Song J, Wang X, Riedo E, Wang ZL: ‘Elastic property of vertically aligned nanowires’, Nano Lett., 2005, 5, (10), 1954–1958.
  • Ni H, Li X: ‘Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques’, Nanotechnology, 2006, 17, (14), 3591–3597.
  • Lucas M, Mai W, Yang R, Wang ZL, Reido E: ‘Aspect ratio dependence of the elastic properties of ZnO nanobelts’, Nano Lett., 2007, 7, (5), 1314–1317.
  • Desai AV, Haque MA: ‘Mechanical properties of ZnO nanowires’, Sens.. Actuat. A: Phys., 2007, 134, 169–176.
  • Kulkarni AJ, Zhou M: ‘Continuum characterization of novel pseudoelasticity of ZnO nanowires’, J. Mech. Phys. Solids, 2008, 56, (7), 2473–2493.
  • Agrawal R, Peng B, Gdoutos EE, Espinosa HD: ‘Elasticity size effects in ZnO nanowires – a combined experimental-computational approach’, Nano Lett., 2008, 8, (11), 3668–3674.
  • Asthana A, Momeni K, Prasad A, Yap YK, Yassar RS: ‘In situ observation of size-scale effects on the mechanical properties of ZnO nanowires’, Nanotechnology, 2011, 22, (26), 265712.
  • Biedermann LB, Tung RC, Raman A, Reifenberger RG, Yazdanpanah MM, Cohn RW: ‘Characterization of silver-gallium nanowires for force and mass sensing applications’, Nanotechnology, 2010, 21, (30), 305701.
  • Montague JR, Dalberth M, Gray JM, Seghete D, Bertness KA, George SM, Bright VM, Rogers CT, Sanford NA: ‘Analysis of high-Q, gallium nitride nanowire resonators in response to deposited thin films’, Sens.. Actuat. A: Phys., 2011, 165, (1), 59–65.
  • Milne RJ, Lockwood AJ, Inkson BJ: ‘Size-dependent deformation mechanisms of Al nanopillars’, J. Phys. D: Appl. Phys., 2011, 44, (48), 485301.
  • Schneider AS, Clark BG, Frick CP, Gruber PA, Arzt E: ‘Effect of orientation and loading rate on compression behavior of small-scale Mo pillars’, Mater. Sci. Eng. A, 2009, A508, 241–246.
  • Greer JR, Weinberger CR, Cai W: ‘Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: compression experiments and dislocation dynamics simulations’, Mater. Sci. Eng. A, 2008, A493, 21–25.
  • Frick CP, Clark BG, Orso S, Schneider AS, Arzt E: ‘Size effect on strength and strain hardening of small-scale [1 1 1] nickel compression pillars’, Mater. Sci. Eng. A, 2008, A489, 319–329.
  • Chen CQ, Pei YT, de Hosson JTM: ‘Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments’, Acta Mater., 2010, 58, (1), 189–200.
  • Burek MJ, Jin S, Leung MC, Jahed Z, Wu J, Budiman AS, Tamura N, Kunz M, Tsui TY: ‘Grain boundary effects on the mechanical properties of bismuth nanostructures’, Acta Mater., 2011, 59, (11), 4709–4718.
  • Burek MJ, Budiman AS, Jahed Z, Tamura N, Kunz M, Jin S, Han SMJ, Lee G, Zamecnik C, Tsui TY: ‘Fabrication, microstructure, and mechanical properties of tin nanostructures’, Mater. Sci. Eng. A, 2011, A528, (18), 5822–5832.
  • Ye J, Mishra RK, Pelton AR, Minor AM: ‘Direct observation of the NiTi martensitic phase transformation in nanoscale volumes’, Acta Mater., 2010, 58, (2), 490–498.
  • Kiener D, Hosemann P, Maloy SA, Minor AM: ‘In situ nanocompression testing of irradiated copper’, Nat. Mater., 2011, 10, (8), 608–613.
  • Kiener D, Minor AM: ‘Source-controlled yield and hardening of Cu(100) studied by in situ transmission electron microscopy’, Acta Mater., 2011, 59, (4), 1328–1337.
  • Lowry MB, Kiener D, LeBlanc MM, Chisholm C, Florando JN, Morris JW, Minor AM: ‘Achieving the ideal strength in annealed molybdenum nanopillars’, Acta Mater., 2010, 58, (15), 5160–5167.
  • Withey EA, Ye J, Minor AM, Kuramoto S, Chrzan DC, Morris JW: ‘Nanomechanical testing of gum metal’, Exp. Mech., 2010, 50, (1), 37–45.
  • Kunz A, Pathak S, Greer JR: ‘Size effects in Al nanopillars: single crystalline vs. bicrystalline’, Acta Mater., 2011, 59, (11), 4416–4424.
  • Kim JY, Jang DC, Greer JR: ‘Crystallographic orientation and size dependence of tension-compression asymmetry in molybdenum nano-pillars’, Int. J. Plast., 2012, 28, (1), 46–52.
  • Kim JY, Greer JR: ‘Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale’, Acta Mater., 2009, 57, (17), 5245–5253.
  • Ryu SY, Xiao J, Park WI, Son KS, Huang YY, Paik U, Rodgers JA: ‘Lateral buckling mechanics in silicon nanowires on elastomeric substrates’, Nano Lett., 2009, 9, (9), 3214.
  • Xiao J, Ryu SY, Huang Y, Hwang K.-C, Paik U, Rogers JA: ‘Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates’, Nanotechnology, 2010, 21, (8), 085708.
  • Johnson WL, Kim SA, Geiss R, Flannery CM, Soles CL, Wang C, Stafford CM, Wu W.-L, Torres JM, Vogt BD, Heyliger PR: ‘Elastic constants and dimensions of imprinted polymeric nanolines determined from Brillouin light scattering’, Nanotechnology, 2010, 21, (7), 075703.
  • Kis A, Zettl A: ‘Nanomechanics of carbon nanotubes’, Philos. Trans. R. Soc. A, 2008, 366A, (1870), 1591–1611.
  • Zhao J, Zhu J: ‘Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes’, Micron, 2011, 42, (7), 663–679.
  • Zhang YC, Wang X: ‘Hygrothermal effects on interfacial stress transfer characteristics of carbon nanotubes-reinforced composites system’, J. Reinf. Plast. Compos., 2006, 25, (1), 71–88.
  • Zbib AA, Mesarovic SD, Lilleodden ET, McClain D, Jiao J, Bahr DF: ‘The coordinated buckling of carbon nanotube turfs under uniform compression’, Nanotechnology, 2008, 19, (17).
  • Qiu A, Bahr DF, Zbib AA, Bellou A, Mesarovic SD, McClain D, Hudson W, Jiao J, Kiener D, Cordill MJ: ‘Local and non-local behavior and coordinated buckling of CNT turfs’, Carbon, 2011, 49, (4), 1430–1438.
  • Cao C, Reiner A, Chung C, Chang S.-H, Kao I, Kukta RV, Korach CS: ‘Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays’, Carbon, 2011, 49, (10), 3190–3199.
  • Fraternali F, Blesgen T, Amendola A, Daraio C: ‘Multiscale mass-spring models of carbon nanotube foams’, J. Mech. Phys. Solids, 2011, 59, (1), 89–102.
  • Zhao J, He M.-R, Dai S, Huang J.-Q, Wei F, Zhu J: ‘TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes’, Carbon, 2011, 49, (1), 206–213.
  • Ru CQ: ‘Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model’, Math. Mech. Solids, 2009, 14, (1–2), 88–101.
  • Chan Y, Thamwattana N, Hill JM: ‘Axial buckling of multi-walled carbon nanotubes and nanopeapods’, Eur. J. Mech. A: Solid., 2011, 30, (6), 794–806.
  • Lahiri I, Lahiri D, Jin S, Agarwal A, Choi W: ‘Carbon nanotubes: how strong is their bond with the substrate?’, ACS Nano, 2011, 5, (2), 780–787.
  • Sawaya S, Arie T, Akita S: ‘Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes’, Nanotechnology, 2011, 22, (16), 165702.
  • Withers JR, Aston DE: ‘Nanomechanical measurements with AFM in the elastic limit’, Adv. Colloid Interface Sci., 2006, 120, (1–3), 57–67.
  • Arroyo M, Arias I: ‘Rippling and a phase-transforming mesoscopic model for multiwalled carbon nanotubes’, J. Mech. Phys. Solids, 2008, 56, (4), 1224–1244.
  • Harrar MS, Gibson RF: ‘Numerical simulation of modal vibration response of wavy carbon nanotubes’, J. Compos. Mater., 2009, 43, (5), 501–515.
  • Ouakad HM, Younis MI: ‘Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation’, J. Sound Vibrat., 2011, 330, (13), 3182–3195.
  • Talukdar K, Mitra AK: ‘Comparative MD simulation study on the mechanical properties of a zigzag single-walled carbon nanotube in the presence of Stone-Thrower-Wales defects’, Compos. Struct., 2010, 92, (7), 1701–1705.
  • Tran-Duc T, Thamwattana N, Cox BJ, Hill JM: ‘Encapsulation of a benzene molecule into a carbon nanotube’, Comp. Mater. Sci., 2011, 50, (9), 2720–2726.
  • Arenal R, Wang M.-S, Xu Z, Loiseau A, Globerg D: ‘Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled bornon nitride nanotubes’, Nanotechnology, 2011, 22, (26), 265704.
  • Ghassemi H, Lee CH, Yap YK, Yassar RS: ‘In situ observation of reversible rippling in multi-walled boron nitride nanotubes’, Nanotechnology, 2011, 2011, (22), 115702.
  • Kim J.-W, Núñez JC, Siochi EJ, Wise KE, Lin Y, Connell JW, Smith MW: ‘In situ mechanical property measurements of amorphous carbon-boron nitride nanotube nanostructures’, Nanotechnology, 2012, 23, (3), 035701.
  • Chen X, Zhang S, Dikin DA, Ding W, Ruoff RS, Pan L, Nakayama Y: ‘Mechanics of a carbon nanocoil’, Nano Lett., 2003, 3, (9), 1299–1304.
  • Stoyanov SR, Titov AV, Král P: ‘Transition metal and nitrogen doped carbon nanostructures’, Coord. Chem. Rev., 2009, 253, (23–24), 2852–2871.
  • Vilatela JJ, Deng L, Kinloch IA, Young RJ, Windle AH: ‘Structure of and stress transfer in fibres spun from carbon nanotubes produced by chemical vapour deposition’, Carbon, 2011, 49, (13), 4149–4158.
  • Rasuli R, Iraji zad A, Ahadian MM: ‘Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory’, Nanotechnology, 2010, 21, (18), 185503.
  • Kirtania S, Chakraborty D: ‘Finite element based characterization of carbon nanotubes’, J. Reinf. Plast. Compos., 2007, 26, (15), 1557–1570.
  • Silvestre N, Wang CM, Zhang YY, Xiang Y: ‘Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio’, Compos. Struct., 2011, 93, (7), 1683–1691.
  • Saavedra Flores EI, Adhikari S, Friswell IM, Scarpa F: ‘Hyperelastic modelling of post-buckling response in single wall carbon nanotubes under axial compression’, Proc. Eng., 2011, 10, 2262–2267.
  • Shen H.-S, Zhang C.-L: ‘Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model’, Compos. Struct., 2010, 92, (5), 1073–1084.
  • Saha R, Maiti PR: ‘Influence of multilayer vdW interaction on torsional buckling of multi-walled carbon nanotube under thermal fields’, J. Reinf. Plast. Compos., 2009, 28, (24), 3009–3020.
  • Wang XY, Wang X: ‘Torsional buckling of multi-walled carbon nanotubes subjected to torsional loads’, J. Reinf. Plast. Compos., 2007, 26, (5), 479–494.
  • Yan Y, Wang WQ, Zhang LX: ‘Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field’, Appl. Math. Model., 2010, 34, (11), 3422–3429.
  • Wang Q: ‘Compressive buckling of carbon nanotubes containing polyethylene molecules’, Carbon, 2011, 49, (2), 729–732.
  • Sun FW, Li H: ‘Torsional strain energy evolution of carbon nanotubes and their stability with encapsulated helical copper nanowires’, Carbon, 2011, 49, (4), 1408–1415.
  • Simsek M: ‘Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle’, Comp. Mater. Sci., 2011, 50, (7), 2112–2123.
  • Wen M, An B, Fukuyama S, Yokogawa K, Ngan AHW: ‘Thermally activated model for tensile yielding of pristine single-walled carbon nanotubes with nonlinear elastic deformation’, Carbon, 2009, 47, (8), 2070–2076.
  • Suzuki K, Nomura S: ‘On elastic properties of single-walled carbon nanotubes as composite reinforcing fillers’, J. Compos. Mater., 2007, 41, (9), 1123–1135.
  • Pande CS, Cooper KP: ‘Nanomechanics of Hall-Petch relationship in nanocrystalline materials’, Prog. Mater. Sci., 2009, 54, (6), 689–706.
  • Aifantis KE, Konstantinidis AA: ‘Hall-Petch revisited at the nanoscale’, Mater. Sci. Eng. B, 2009, B163, (3), 139–144.
  • Vernerey F, Liu WK, Moran B: ‘Multi-scale micromorphic theory for hierarchical materials’, J. Mech. Phys. Solids, 2007, 55, (12), 2603–2651.
  • Shen J, Mao J, Reyes G, Chow CL, Boileau J, Su X, Wells JM: ‘A multiresolution transformation rule of material defects’, Int. J. Damage Mech., 2009, 18, (8), 739–758.
  • Ovid'ko IA, Sheinerman AG: ‘Micromechanisms for improved fracture toughness in nanoceramics’, Rev. Adv. Mater. Sci., 2011, 29, (2), 105–125.
  • Ovid'ko IA, Sheinerman AG, Aifantis EC: ‘Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids’, Acta Mater., 2011, 59, (12), 5023–5031.
  • Dao M, Lu L, Asaro RJ, de Hosson JTM, Ma E: ‘Toward a quantitative understanding of mechanical behavior of nanocrystalline metals’, Acta Mater., 2007, 55, (12), 4041–4065.
  • Ma J, Karaman I, Noebe RD: ‘High temperature shape memory alloys’, Int. Mater. Rev., 2010, 55, (5), 257–315.
  • Müllner P, Clark Z, Kenoyer L, Knowlton WB, Kostorz G: ‘Nanomechanics and magnetic structure of orthorhombic Ni–Mn–Ga martensite’, Mater. Sci. Eng. A, 2008, A481–A482, 66–72.
  • Reinhold M, Kiener D, Knowlton WB, Dehm G, Müllner P: ‘Deformation twinning in Ni–Mn–Ga micropillars with 10M martensite’, J. Appl. Phys., 2009, 106, (5), 053906-053901–053906-053906.
  • Dunand DC, Müllner P: ‘Size effects on magnetic actuation in Ni–Mn–Ga shape-memory alloys’, Adv. Mater., 2011, 23, 216–232.
  • Robertson SW, Pelton AR, Ritchie RO: ‘Mechanical fatigue and fracture of Nitinol’, Int. Mater. Rev., 2012, 51, (1), 1–37.
  • Müllner P, King AH: ‘Deformation of hierarchically twinned martensite’, Acta Mater., 2010, 58, (16), 5242–5261.
  • Sun QP, He YJ: ‘A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals’, Int. J. Solids Struct., 2008, 45, (13), 3868–3896.
  • Luo H, Hu J, Zhu Y: ‘Tunable shape recovery of polymeric nano-composites’, Mater. Lett., 2011, 65, (23–24), 3583–3585.
  • Leng J, Lan X, Liu Y, Du S: ‘Shape-memory polymers and their composites: Stimulus methods and applications’, Prog. Mater Sci., 2011, 56, (7), 1077–1135.
  • Yang Q.-S, He X.-Q, Liu X, Leng F.-F, Mai Y.-W: ‘The effective properties and local aggregation effect of CNT/SMP composites’, Compos. Part B, 2012, 43B, (1), 33–38.
  • Hendricks TR, Wang W, Lee I: ‘Buckling in nanomechanical films’, Soft Matter, 2010, 6, (16), 3701–3706.
  • Moutanabbir O, Reiche M, Zakharov N, Naumann F, Petzold M: ‘Nanoscale patterning induced strain redistribution in ultrathin strained Si layers on oxide’, Nanotechnology, 2010, 21, (13), 134013.
  • Moutanabbir O, Reiche M, Zakharov N, Naumann F, Petzold M: ‘Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer’, Nanotechnology, 2011, 22, (4), 045701.
  • Wei X, Lee D, Shim S, Chen X, Kysar JW: ‘Plane-strain bulge test for nanocrystalline copper thin films’, Scr. Mater., 2007, 57, (6), 541–544.
  • Yang F, Yang W: ‘Brittle versus ductile transition of nanocrystalline metals’, Int. J. Solids Struct., 2008, 45, (13), 3897–3907.
  • Godon A, Creus J, Cohendoz S, Conforto E, Feaugas X, Girault P, Savall C: ‘Effects of grain orientation on the Hall-Petch relationship in electrodeposited nickel with nanocrystalline grains’, Scr. Mater., 2010, 62, (6), 403–406.
  • Tschopp MA, Spearot DE, McDowell DL: ‘Chapter 82: influence of grain boundary structure on dislocation nucleation in fcc metals’, in ‘Dislocations in solids’, (ed. H. John), 43–139; 2008, Amsterdam, Elsevier.
  • Morozov NF, Ovid'ko IA, Sheinerman AG, Aifantis EC: ‘Special rotational deformation as a toughening mechanism in nanocrystalline solids’, J. Mech. Phys. Solids, 2010, 58, (8), 1088–1099.
  • Caicedo JC, Amaya C, Yate L, Gómez ME, Zambrano G, Alvarado-Rivera J, Muñoz-Saldaña J, Prieto P: ‘TiCN/TiNbCN multilayer coatings with enhanced mechanical properties’, Appl. Surf. Sci., 2010, 256, (20), 5898–5904.
  • Mastorakos IN, Abdolrahim N, Zbib HM: ‘Deformation mechanisms in composite nano-layered metallic and nanowire structures’, Int. J. Mech. Sci., 2010, 52, (2), 295–302.
  • Bellou A, Overman CT, Zbib HM, Bahr DF, Misra A: ‘Strength and strain hardening behavior of Cu-based bilayers and trilayers’, Scr. Mater., 2011, 64, (7), 641–644.
  • Zbib HM, Overman CT, Akasheh F, Bahr D: ‘Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces’, Int. J. Plast., 2011, 27, (10), 1618–1639.
  • Bellou A, Bahr DF: ‘Strength and aging behavior of Mo/Pt multilayers’, J. Mater. Sci., 2011, 46, (1), 108–116.
  • Charitidis CA: ‘Nanomechanical and nanotribological properties of carbon-based thin films: a review’, Int. J. Refract. Met. Hard Mater., 2010, 28, (1), 51–70.
  • Borrero-López O, Hoffman M, Bendavid A, Martin PJ: ‘A simple nanoindentation-based methodology to assess the strength of brittle thin films’, Acta Mater., 2008, 56, (7), 1633–1641.
  • Mukhopadhyay A, Basu B: ‘Recent developments on WC-based bulk composites’, J. Mater. Sci., 2011, 46, (3), 571–589.
  • Zhang Z, Chen DL: ‘Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites’, Mater. Sci. Eng. A, 2008, A483–A484, 148–152.
  • Sadeghian Z, Lotfi B, Enayati MH, Beiss P: ‘Microstructural and mechanical evaluation of Al-TiB(2) nanostructured composite fabricated by mechanical alloying’, J. Alloys Compd., 2011, 509, (29), 7758–7763.
  • Mazahery A, Abdizadeh H, Baharvandi HR: ‘Development of high-performance A356/nano-Al2O3 composites’, Mater. Sci. Eng. A, 2009, A518, (1–2), 61–64.
  • Tomar V, Gan M: ‘Temperature dependent nanomechanics of Si-C-N nanocomposites with an account of particle clustering and grain boundaries’, Int. J. Hydrogen Energy, 2011, 36, (7), 4605–4616.
  • Pugno N, Carpinteri A, Ippolito M, Mattoni A, Colombo L: ‘Atomistic fracture: QFM vs. MD’, Eng. Fract. Mech., 2008, 75, (7), 1794–1803.
  • Tsao LC: ‘An investigation of microstructure and mechanical properties of novel Sn3·5Ag0·5Cu-XTiO2 composite solders as functions of alloy composition and cooling rate’, Mater. Sci. Eng. A, 2011, A529, 41–48.
  • Geranmayeh AR, Mahmudi R, Kangooie M: ‘High-temperature shear strength of lead-free Sn-Sb-Ag/Al2O3 composite solder’, Mater. Sci. Eng. A, 2011, A528, (12), 3967–3972.
  • Hassan SF, Gupta M: ‘Effect of length scale of Al2O3 particulates on microstructural and tensile properties of elemental Mg’, Mater. Sci. Eng. A, 2006, A425, (1–2), 22–27.
  • Tjong SC: ‘Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties’, Adv. Eng. Mater., 2007, 9, (8), 639–652.
  • Levashov E, Kurbatkina V, Alexandr Z: ‘Improved mechanical and tribological properties of metal-matrix composites dispersion-strengthened by nanoparticles’, Materials, 2010, 3, (1), 97–109.
  • Habibnejad-Korayem M, Mahmudi R, Poole WJ: ‘Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles’, Mater. Sci. Eng. A, 2009, A519, (1–2), 198–203.
  • Goussous S, Xu W, Wu X, Xia K: ‘Al–C nanocomposites consolidated by back pressure equal channel angular pressing’, Compos. Sci. Technol., 2009, 69, (11–12), 1997–2001.
  • de Cicco M, Konishi H, Cao GP, Choi HS, Turng LS, Perepezko JH, Kou S, Lakes R, Li XC: ‘Strong, ductile magnesium-zinc nanocomposites’, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 2009, 40, (12), 3038–3045.
  • Cao GP, Konishi H, Li XC: ‘Mechanical properties and microstructure of Mg/SiC nanocomposites fabricated by ultrasonic cavitation based nanomanufacturing’, J. Manuf. Sci. Eng.: Trans. ASME, 2008, 130, (3), 031105.
  • Balint DS, Deshpande VS, Needleman A, van der Giessen E: ‘Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals’, Int. J. Plast., 2008, 24, (12), 2149–2172.
  • Yazdi AZ, Bagheri R, Zebarjad SM, Hesabi ZR: ‘Incorporating aspect ratio in a new modeling approach for strengthening of MMCs and its extension from micro to nano scale’, Adv. Compos. Mater, 2010, 19, (4), 299–316.
  • Law E, Pang SD, Quek ST: ‘Discrete dislocation analysis of the mechanical response of silicon carbide reinforced aluminum nanocomposites’, Compos. Part B, 2011, 42B, (1), 92–98.
  • Bakshi SR, Musaramthota V, Lahiri D, Singh V, Seal S, Agarwal A: ‘Spark plasma sintered tantalum carbide: effect of pressure and nano-boron carbide addition on microstructure and mechanical properties’, Mater. Sci. Eng. A, 2011, A528, (3), 1287–1295.
  • Jiang LY: ‘A cohesive law for carbon nanotube/polymer interface accounting for chemical covalent bonds’, Math. Mech. Solids, 2010, 15, (7), 718–732.
  • Ma P.-C, Siddiqui NA, Maron G, Kim J.-K: ‘Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review’, Compos. Part A, 2010, 41A, (10), 1345–1367.
  • Bakshi SR, Lakiri D, Agarwal A: ‘Carbon nanotube reinforced metal matrix composites – a review’, Int. Mater. Rev., 2010, 55, 41–64.
  • Balani K, Agarwal A: ‘Damping behavior of carbon nanotube reinforced aluminum oxide coatings by nanomechanical dynamic modulus mapping’, J. Appl. Phys., 2008, 104, (6), 063517.
  • Wilson K, Barrera EV, Bayazitoglu Y: ‘Processing of titanium single-walled carbon nanotube metal-matrix composites by the induction melting method’, J. Compos. Mater., 2010, 44, (9), 1037–1048.
  • Bakshi SR, Musaramthota V, Virzi DA, Keshri AK, Lahiri D, Singh V, Seal S, Agarwal A: ‘Spark plasma sintered tantalum carbide-carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties’, Mater. Sci. Eng. A, 2011, A528, (6), 2538–2547.
  • Bakshi SR, Lahiri D, Patel RR, Agarwal A: ‘Nanoscratch behavior of carbon nanotube reinforced aluminum coatings’, Thin Solid Films, 2010, 518, (6), 1703–1711.
  • Bakshi SR, Keshri AK, Agarwal A: ‘A comparison of mechanical and wear properties of plasma sprayed carbon nanotube reinforced aluminum composites at nano and macro scale’, Mater. Sci. Eng. A, 2011, A528, (9), 3375–3384.
  • Lahiri D, Singh V, Keshri AK, Seal S, Agarwal A: ‘Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties’, Carbon, 2010, 48, (11), 3103–3120.
  • Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A: ‘Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts’, J. Mech. Behav. Biomed., 2011, 4, (1), 44–56.
  • Yang J.-P, Chen Z.-K, Feng Q.-P, Deng Y.-H, Liu Y, Ni Q.-Q, Fu S.-Y: ‘Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone)’, Compos. Part B, 2012, 43B, (1), 22–26.
  • Liu H.-Y, Wang G.-T, Mai Y.-W, Zeng Y: ‘On fracture toughness of nano-particle modified epoxy’, Compos. Part B, 2011, 42B, (8), 2170–2175.
  • He H, Li K, Wang J, Sun G, Li Y, Wang J: ‘Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites’, Mater. Des., 2011, 32, (8–9), 4521–4527.
  • Ayatollahi MR, Shadlou S, Shokrieh MM, Chitsazzadeh M: ‘Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites’, Polym. Test., 2011, 30, (5), 548–556.
  • Zeng Y, Liu H.-Y, Mai Y.-W, Du X.-S: ‘Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles’, Compos. Part B, 2012, 43, (1), 90–94.
  • Hussain F, Hojjati M, Okamoto M, Gorga RE: ‘Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: An overview’, J. Compos. Mater., 2006, 40, (17), 1511–1575.
  • Pavlidou S, Papaspyrides CD: ‘A review on polymer-layered silicate nanocomposites’, Prog. Polym. Sci., 2008, 33, (12), 1119–1198.
  • Seltzer R, Mai Y.-W, Frontini PM: ‘Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending’, Compos. Part B, 2012, 43B, (1), 83–89.
  • Anoukou K, Zaïri F, Naït-Abdelaziz M, Zaoui A, Messager T, Gloaguen JM: ‘On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part I: theory’, Compos. Sci. Technol., 2011, 71, (2), 197–205.
  • Zhang J, Xie X: ‘Influence of addition of silica particles on reaction-induced phase separation and properties of epoxy/PEI blends’, Compos. Part B, 2011, 42B, (8), 2163–2169.
  • Yang Y, Li Y.-Q, Shi H.-Q, Li W.-N, Xiao H.-M, Zhu L.-P, Luo Y.-S, Fu S.-Y, Liu T: ‘Fabrication and characterization of transparent ZnO–SiO2/silicone nanocomposites with tunable emission colors’, Compos. Part B, 2011, 42B, (8), 2105–2110.
  • Lu M, He B, Wang L, Ge W, Lu Q, Liu Y, Zhang L: ‘Preparation of polystyrene–polyisoprene core–shell nanoparticles for reinforcement of elastomers’, Compos. Part B, 2012, 43B, (1), 50–56.
  • Li Y.-Q, Kang Y, Xiao H.-M, Mei S.-G, Zhang G.-L, Fu S.-Y: ‘Preparation and characterization of transparent Al doped ZnO/epoxy composite as thermal-insulating coating’, Compos. Part B, 2011, 42B, (8), 2176–2180.
  • Zhao J.-C, Du F.-P, Zhou X.-P, Cui W, Wang X.-M, Zhu H, Xie X.-L, Mai Y.-W: ‘Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites’, Compos. Part B, 2011, 42B, (8), 2111–2116.
  • Shindo Y, Kuronuma Y, Takeda T, Narita F, Fu S.-Y: ‘Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading’, Compos. Part B, 2012, 43B, (1), 39–43.
  • Rahmat M, Hubert P: ‘Carbon nanotube–polymer interactions in nanocomposites: a review’, Compos. Sci. Technol., 2011, 72, (1), 72–84.
  • Spitalsky Z, Tasis D, Papgelis K, Galiotis C: ‘Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties’, Prog. Polym. Sci., 2010, 35, (3), 357–401.
  • Liu X, He X.-Q, Yang Q.-S, Mai Y.-W: ‘Overall behavior and microstructural deformation of R-CNT/polymer composites’, Compos. Part B, 2011, 42B, (8), 2123–2129.
  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A: ‘Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites’, Ind. Crop. Prod., 2010, 32, (3), 627–633.
  • Al-Saleh MH, Sundararaj U: ‘Review of the mechanical properties of carbon nanofiber/polymer composites’, Compos. Part A, 2011, 42A, (12), 2126–2142.
  • Hu N, Li Y, Nakamura T, Katsumata T, Koshikawa T, Arai M: ‘Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates’, Compos. Part B, 2012, 43B, (1), 3–9.
  • Ye Y, Chen H, Wu J, Chan CM: ‘Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites’, Compos. Part B, 2011, 42B, (8), 2145–2150.
  • Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS: ‘Current issues in research on structure-property relationships in polymer nanocomposites’, Polymer, 2010, 51, (15), 3321–3343.
  • Karamipour S, Ebadi-Deghani H, Ashouri D, Mousavian S: ‘Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: Experiments and models’, Polym. Test., 2011, 30, (1), 110–117.
  • Mohagheghian M, Ebadi-Dehaghani H, Davoud A, Mousavian S: ‘A study on the effect of nano-ZnO on rheological and dynamic mechanical properties of polypropylene: experiments and models’, Compos. Part B, 2011, 42B, (7), 2038–2046.
  • Guo J, Ren L, Wang R, Zhang C, Yang Y, Liu T: ‘Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite’, Compos. Part B, 2011, 42B, (8), 2130–2135.
  • Hayashi T, Endo M: ‘Carbon nanotubes as structural material and their application in composites’, Compos. Part B, 2011, 42B, (8), 2151–2157.
  • Couvy H, Lahiri D, Chen J, Agarwal A, Sen G: ‘Nanohardness and Young’s modulus of nanopolycrystalline diamond’, Scr. Mater., 2011, 64, (11), 1019–1022.
  • Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM: ‘Biodegradable polymer matrix nanocomposites for tissue engineering: a review’, Polym. Degrad. Stab., 2010, 95, (11), 2126–2146.
  • Gibson RF: ‘A review of recent research on mechanics of multifunctional composite materials and structures’, Compos. Struct., 2010, 92, (12), 2793–2810.
  • Theodosiou TC, Saravanos DA: ‘Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models’, Compos. Sci. Technol., 2010, 70, (9), 1312–1320.
  • Yazdchi K, Salehi M: ‘The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites’, Compos. Part A, 2011, 42A, (10), 1301–1309.
  • Zhao XJ, Rajapakse RKND: ‘Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects’, Int. J. Eng. Sci., 2009, 47, (11–12), 1433–1444.
  • Skubiszak L: ‘Nanomechanics = biomechanics’, Bull. Pol. Acad. Sci. Tech. Sci., 2009, 57, (1), 47–53.
  • Barkaoui A, Bettamer A, Hambli R: ‘Failure of mineralized collagen microfibrils using finite element simulation coupled to mechanical quasi-brittle damage’, Proc. Eng., 2011, 10, 3193–3198.
  • Bourne JW, Torzilli PA: ‘Molecular simulations predict novel collagen conformations during cross-link loading’, Matrix Biol., 2011, 30, (5–6), 356–360.
  • Buehler MJ: ‘Molecular architecture of collagen fibrils: a critical length scale for tough fibrils’, Curr. Appl. Phys., 2008, 8, (3–4), 440–442.
  • Buonsanti M, Pontari A: ‘Change stability configurations to endothelial cells’, Proc. Eng., 2011, 10, 1527–1531.
  • Galera-Prat A, Gomez-Sicilia A, Oberhauser AF, Cieplak M, Carrion-Vazquez M: ‘Understanding biology by stretching proteins: recent progress’, Curr. Opin. Struct. Biol., 2010, 20, (1), 63–69.
  • Li H: ‘Engineering proteins with tailored nanomechanical properties: a single molecule approach’, Org. Biomol. Chem., 2007, 5, (21), 3399–3406.
  • Shen ZL, Kahn H, Ballarini R, Eppell SJ: ‘Viscoelastic properties of isolated collagen fibrils’, Biophys. J., 2011, 100, (12), 3008–3015.
  • Uzel SGM, Buehler MJ: ‘Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen’, J. Mech. Behav. Biomed., 2011, 4, (2), 153–161.
  • Desikan R, Tetard L, Passian A, Datar R, Thundat T: ‘Nanomechanical methods to study single cells’, Access. Uncultiv. Microorg., 2008, 245–265.
  • Desmaële D, Boukallel M, Régnier S: ‘Actuation means for the mechanical stimulation of living cells via microelectromechanical systems: a critical review’, J. Biomech., 2011, 44, (8), 1433–1446.
  • Gaboriaud F, Dufrêne YF: ‘Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces’, Colloids Surf. B: Biointerfaces, 2007, 54, (1), 10–19.
  • Li M, Liu L, Xi N, Wang Y, Dong Z, Tabata O, Xiao X, Zhang W: ‘Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy’, Biochem. Biophys. Res. Commun., 2011, 404, (2), 689–694.
  • Müller DJ, Dufrêne YF: ‘Atomic force microscopy: a nanoscopic window on the cell surface’, Trends Cell Biol., 2011, 21(8), 461–469.
  • Perry CC, Weatherly M, Beale T, Randriamahefa A: ‘Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escherichia coli and Staphylococcus aureus’, J. Sci. Food Agric., 2009, 89, 958–964.
  • Plodinec M, Loparic M, Suetterlin R, Herrmann H, Aebi U, Schoenenberger C.-A: ‘The nanomechanical properties of rat fibroblasts are modulated by interfering with the vimentin intermediate filament system’, J. Struct. Biol., 2011, 174, (3), 476–484.
  • Starodubtseva MN: ‘Mechanical properties of cells and ageing’, Ageing Res. Rev., 2011, 10, (1), 16–25.
  • Evans E, Kinoshita K: ‘Using force to probe single-molecule receptor–cytoskeletal anchoring beneath the surface of a living cell’, in ‘Methods in cell biology’, (eds. Wang and Discher), 373–396; 2007, New York, Academic Press.
  • Ikai A: ‘Nanobiomechanics of proteins and biomembrane’, Philos. Trans. R. Soc. B, 2008, 363B, (1500), 2163–2171.
  • Morandat S, El Kirat K: ‘Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy’, Colloids Surf. B: Biointerfaces, 2011, 82, (1), 111–117.
  • Schäpe J, Prauße S, Radmacher M, Stick R: ‘Influence of lamin A on the mechanical properties of amphibian oocyte nuclei measured by atomic force microscopy’, Biophys. J., 2009, 96, (10), 4319–4325.
  • Ahimou F, Semmens MJ, Novak PJ, Haugstad G: ‘Biofilm cohesiveness measurement using a novel atomic force microscopy methodology’, Appl. Environ. Microbiol., 2007, 73, (9), 2897–2904.
  • Xu B, Chen X: ‘The role of mechanical stress on the formation of a curly pattern of human hair’, J. Mech. Behav. Biomed., 2011, 4, (2), 212–221.
  • Crichton ML, Donose BC, Chen X, Raphael AP, Huang H, Kendall MAF: ‘The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers’, Biomaterials, 2011, 32, (20), 4670–4681.
  • Balani K, Patel RR, Keshri AK, Lahiri D, Agarwal A: ‘Multi-scale hierarchy of Chelydra serpentina: Microstructure and mechanical properties of turtle shell’, J. Mech. Behav. Biomed. Mater., 2011, 4, (7), 1440–1451.
  • Barthelat F, Rabiei R: ‘Toughness amplification in natural composites’, J. Mech. Phys. Solids, 2011, 59, (4), 829–840.
  • Meyers MA, Chen P.-Y, Lopez MI, Seki Y, Lin AYM: ‘Biological materials: a materials science approach’, J. Mech. Behav. Biomed., 2011, 4, (5), 626–657.
  • Ang SF, Bortel EL, Swain MV, Klocke A, Schneider GA: ‘Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales’, Biomaterials, 2010, 31, (7), 1955–1963.
  • Espinosa HD, Rim JE, Barthelat F, Buehler MJ: ‘Merger of structure and material in nacre and bone – perspectives on de novo biomimetic materials’, Prog. Mater Sci., 2009, 54, (8), 1059–1100.
  • Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS: ‘Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model’, J. Biomech., 2011, 44, (2), 297–303.
  • Dong XN, Almer JD, Wang X: ‘Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques’, J. Biomech., 2011, 44, (4), 676–682.
  • Feng L, Jasiuk I: ‘Multi-scale characterization of swine femoral cortical bone’, J. Biomech., 2011, 44, (2), 313–320.
  • Yao H, Dao M, Carnelli D, Tai K, Ortiz C: ‘Size-dependent heterogeneity benefits the mechanical performance of bone’, J. Mech. Phys. Solids, 2011, 59, (1), 64–74.
  • Liu G, Zhao DC, Tomsia AP, Minor AM, Song XY, Saiz E: ‘Three-dimensional biomimetic mineralization of dense hydrogel templates’, J. Am. Chem. Soc., 2009, 131, (29), 9937–9939.
  • Meaud J, Grosh K: ‘Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model’, Biophys. J., 2011, 100, (11), 2576–2585.
  • Kazakeviciute-Makovska R, Steeb H: ‘Superelasticity and self-healing of proteinaceous biomaterials’, Proc. Eng., 2011, 10, 2603–2608.
  • Heinisch JJ, Dufrene YF: ‘Is there anyone out there? Single-molecule atomic force microscopy meets yeast genetics to study sensor functions’, Integr. Biol., 2010, 2, (9), 408–415.
  • Shanmuganathan K, Capadona JR, Rowan SJ, Weder C: ‘Biomimetic mechanically adaptive nanocomposites’, Prog. Polym. Sci., 2010, 35, (1–2), 212–222.
  • Mauldin TC, Kessler MR: ‘Self-healing polymers and composites’, Int. Mater. Rev., 2010, 55, (6), 317–346.
  • Meng H, Hu J: ‘A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli’, J. Intell. Mater. Syst. Struct., 2010, 21, (9), 859–885.
  • Civalek Ö, Demir Ç: ‘Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory’, Appl. Math. Model., 2011, 35, (5), 2053–2067.
  • Kumar S, Li MS: ‘Biomolecules under mechanical force’, Phys. Rep., 2010, 486, (1–2), 1–74.
  • Srinivasan M, Uzel SGM, Gautieri A, Keten S, Buehler MJ: ‘Linking genetics and mechanics in structural protein materials: a case study of an Alport syndrome mutation in tropocollagen’, Math. Mech. Solids, 2010, 15, 755–770.
  • Verma HK, Matthews WG: ‘Nanomechanics of collagen type I fibrils using AFM’, Biophys. J., 2011, 100, (3 Suppl. 1), 483a–483a.
  • Paparcone R, Buehler MJ: ‘Failure of A[beta](1–40) amyloid fibrils under tensile loading’, Biomaterials, 2011, 32, (13), 3367–3374.
  • Khanna R, Katti KS, Katti DR: ‘Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone’, Acta Biomater., 2011, 7, (3), 1173–1183.
  • Evans E, Kinoshita K, Simon S, Leung A: ‘Long-lived, high-strength states of ICAM-1 bonds to β2 integrin, I: lifetimes of bonds to recombinant αL β2 under force’, Biophys. J., 2010, 98, (8), 1458–1466.
  • Kinoshita K, Leung A, Simon S, Evans E: ‘Long-lived, high-strength states of ICAM-1 bonds to β2 integrin, II: lifetimes of LFA-1 bonds under force in leukocyte signaling’, Biophys. J., 2010, 98, (8), 1467–1475.
  • Chen W, Evans EA, McEver RP, Zhu C: ‘Monitoring receptor-ligand interactions between surfaces by thermal fluctuations’, Biophys. J., 2008, 94, (2), 694–701.
  • Sbrana F, Lorusso M, Canale C, Bochicchio B, Vassalli M: ‘Effect of chemical cross-linking on the mechanical properties of elastomeric peptides studied by single molecule force spectroscopy’, J. Biomech., 2011, 44, (11), 2118–2122.
  • Zheng P, Cao Y, Bu T, Suzana KStraus, Li H: ‘Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins’, Biophys. J., 2011, 100, (6), 1534–1541.
  • Kaur P, Qiang F, Fuhrmann A, Ros R, Kutner LO, Schneeweis LA, Navoa R, Steger K, Xie L, Yonan C, Abraham R, Grace MJ, Lindsay S: ‘Antibody-unfolding and metastable-state binding in force spectroscopy and recognition imaging’, Biophys. J., 2011, 100, (1), 243–250.
  • Yu J, Warnke J, Lyubchenko YL: ‘Nanoprobing of α-synuclein misfolding and aggregation with atomic force microscopy’, Nanomed. Nanotechnol. Biol. Med., 2011, 7, (2), 146–152.
  • Cao Y, Li H: ‘Dynamics of protein folding and cofactor binding monitored by single-molecule force spectroscopy’, Biophys. J., 2011, 101, (8), 2009–2017.
  • Ferreon ACM, Deniz AA: ‘Protein folding at single-molecule resolution’, BBA-Proteins Proteom., 2011, 1814, (8), 1021–1029.
  • Noy A: ‘Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment’, Curr. Opin. Chem. Biol., 2011, 15, (5), 710–718.
  • Wang K, Forbes JG: ‘Muscle giants create order from chaos with force’, Biophys. J., 2011, 100, (3 Suppl. 1), 589a–589a.
  • Sapra KT, Muller DJ: ‘Nanomechanics of membrane proteins probed by atomic force microscopy’, Biophys. J., 2011, 100, (3 Suppl. 1), 27a–28a.
  • Xiang P, Liew KM: ‘Predicting buckling behavior of microtubules based on an atomistic-continuum model’, Int. J. Solids Struct., 2011, 48, (11–12), 1730–1737.
  • Heus HA, Puchner EM, van Vugt-Jonker AJ, Zimmermann JL, Gaub HE: ‘Atomic force microscope-based single-molecule force spectroscopy of RNA unfolding’, Anal. Biochem., 2011, 414, (1), 1–6.
  • Østergaard ME, Hrdlicka PJ: ‘Pyrene-functionalized oligonucleotides and locked nucleic acids (LNAs): tools for fundamental research, diagnostics, and nanotechnology’, Chem. Soc. Rev., 2011, 40, (12), 5771–5788.
  • Kauert DJ, Kurth T, Liedl T, Seidel R: ‘Direct mechanical measurements reveal the material properties of three-dimensional DNA origami’, Nano Lett., 2011, 11, (12), 5558–5563.
  • Müller M, Ackermann D, Famulok M: ‘Nucleic acid based tools for pharmacology and nano-engineering’, Comptes Rendus Chim., 2011, 14, (9), 819–825.
  • Seeman NC: ‘Nanomaterials based on DNA’, Annu. Rev. Biochem., 2010, 79, 65–87.
  • Rabbi M, Manson L, Marszalek PE: ‘Nanomechanics of canonical double stranded DNA structures probed with single-molecule force spectroscopy’, Biophys. J., 2011, 100, (3 Suppl. 1), 480a–480a.
  • Purohit PK, Litvinov RI, Brown AEX, Discher DE, Weisel JW: ‘Protein unfolding accounts for the unusual mechanical behavior of fibrin networks’, Acta Biomater., 2011, 7, (6), 2374–2383.
  • Chen Q, Pugno NM: ‘Modeling the elastic anisotropy of woven hierarchical tissues’, Compos. Part B, 2011, 42B, (7), 2030–2037.
  • Webb HK, Truong VK, Hasan J, Crawford RJ, Ivanova EP: ‘Physico-mechanical characterisation of cells using atomic force microscopy – current research and methodologies’, J. Microbiol. Methods, 2011, 86, (2), 131–139.
  • Zhang H, Liu K.-K: ‘Optical tweezers for single cells’, J. R. Soc. Interface, 2008, 5, (24), 671–690.
  • Leckband D: ‘From single molecules to living cells: nanomechanical measurements of cell adhesion’, Cell. Mol. Bioeng., 2008, 1, (4), 312–326.
  • Chen Y.-Y, Wu C.-C, Hsu J.-L, Peng H.-L, Change H.-Y, Yew T.-R: ‘Surface rigidity change of Escherichia coli after filamentous bacteriophage infection’, Langmuir, 2009, 25, (8), 4607–4614.
  • Herrmann H, Strelkov SV, Burkhard P, Aebi U: ‘Intermediate filaments: primary determinants of cell architecture and plasticity’, J. Clin. Invest., 2009, 119, (7), 1772–1783.
  • Herrmann H, Baer H, Kreplak L, Strelkov SV, Aebi U: ‘Intermediate filaments: from cell architecture to nanomechanics’, Nat. Rev. Mol. Cell Biol., 2007, 8, (7), 562–573.
  • Balani K, Brito FC, Kos L, Agarwal A: ‘Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet’, J. R. Soc. Interface, 2009, 6, (40), 1097–1102.
  • Shen H.-S: ‘Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model’, J. Theor. Biol., 2010, 264, (2), 386–394.
  • Gao Y, Lei F.-M: ‘Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory’, Biochem. Biophys. Res. Commun., 2009, 387, (3), 467–471.
  • Mohanty B, Katti KS, Katti DR: ‘Experimental investigation of nanomechanics of the mineral-protein interface in nacre’, Mech. Res. Commun., 2008, 35, (1–2), 17–23.
  • Li HH, Swain MV: ‘Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics’, J. Mech. Behav. Biomed. Mater., 2008, 1, (1), 18–29.
  • Han L, Frank EH, Greene JJ, Lee H.-Y, Hung H.-HK, Grodzinsky AJ, Ortiz C: ‘Time-dependent nanomechanics of cartilage’, Biophys. J., 2011, 100, (7), 1846–1854.
  • Chasiotis I: ‘Mechanics of thin films and microdevices’, IEEE Trans. Device Mater. Reliab., 2004, 4, (2), 176–188.
  • Bhushan B: ‘Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices’, Microelectron. Eng., 2007, 84, (3), 387–412.
  • Cimalla V, Pezdolt J, Ambacher O: ‘Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications’, J. Phys. D: Appl. Phys., 2007, 40, (20), 6386–6434.
  • Mahar B, Laslau C, Yip R, Sun Y: ‘Development of carbon nanotube-based sensors – a review’, IEEE Sens. J., 2007, 7, (2), 266–284.
  • Collard D, Takeuchi S, Fujita H: ‘MEMS technology for nanobio research’, Drug Discov. Today, 2008, 13, (21/22), 989–996.
  • Roy S, Gao Z: ‘Nanostructure-based electrical biosensors’, Nano Today, 2009, 4, (4), 318–334.
  • Demoustier S, Minoux E, le Baillif M, Charles M, Ziaei A: ‘Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches’, Comptes Rendus Phys., 2008, 9, (1), 53–66.
  • Zorman CA, Parro RJ: ‘Micro- and nanomechanical structure for silicon carbide MEMS and NEMS’, Phys. Status Solidi B, 2008, 245B, (7), 1404–1424.
  • Prinz VY, Seleznev VA, Prinz AV, Kopylov V: ‘3D heterostructures and systems for novel MEMS/NEMS’, Sci. Technol. Adv. Mater., 2009, 10, (3), 034502.
  • Auciello O, Sumant AV: ‘Status review of the science and technology of ultrananocrystalline diamond (UNCD) films and application to multifunctional devices’, Diamond Relat. Mater., 2010, 19, 699–718.
  • Ekinci KL, Yakhot V, Rajauria S, Colosqui C, Karabacak DM: ‘High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS’, Lab on a Chip, 2010, 10, 3013–3025.
  • Eom K, Park HS, Yoon DS, Kwon T: ‘Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles’, Phys. Rep., 2011, 503, (4–5), 115–163.
  • Zaghloul U, Papaioannou G, Bhushan B, Coccetti F, Pons P, Plana R: ‘On the reliability of electrostatic NEMS/MEMS devices: review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies’, Microelectron. Reliab., 2011, 51, 1810–1818.
  • Ghavanini FA, Enoksson P, Bengtsson S, Lundgren P: ‘Vertically aligned carbon based varactors’, J. Appl. Phys., 2011, 110, (2), 021101.
  • Gu X, Kaiser RI, Mebel AM: ‘Chemistry of energetically activated cumulenes-from allene (H2CCCH2) to hexapentaene (H2CCCCCCH2)’, Chem. Phys. Chem., 2008, 9, (3), 350–369.
  • Liu F, Lagally MG, Zang J: ‘Nanomechanical architectures-Mechanics-driven fabrication based on crystalline membranes’, MRS Bull., 2009, 34, (3), 190–195.
  • Gu H, Chao J, Xiao S.-J, Seeman NC: ‘A proximity-based programmable DNA nanoscale assembly line’, Nature, 2010, 465, (7295), 202–205.
  • Datar R, Kim S, Jeon S, Hesketh P, Manalis S, Boisen A, Thundat T: ‘Cantilever sensors: nanomechanical tools for diagnostics’, MRS Bull., 2009, 34, (6), 449–454.
  • Waggoner PS, Craighead HG: ‘Micro- and nanomechanical sensors for environmental, chemical, and biological detection’, Lab on a Chip, 2007, 7, (10), 1238–1255.
  • Mei Y, Huang G, Solovev AA, Ureña EB, Mönch I, Ding A, Reindl T, Fu RKY, Chu PK, Schmidt OG: ‘Versatile approach for integratice and functionalized tubes by strain engineering of nanomembranes on polymers’, Adv. Mater., 2008, 20, (21), 4085–4090.
  • Bell DJ, Dong L, Nelson BJ, Golling M, Zhang L, Grützmacher D: ‘Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings’, Nano Lett., 2006, 6, (4), 725–729.
  • Wood JR, Wagner HD: ‘Single-wall carbon nanotubes as molecular pressure sensors’, Appl. Phys. Lett., 2000, 76, (20), 2883–2885.
  • Fung CKM, Zhang MQH, Chan RHM, Li WJ: ‘A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements’, Proc. 18th IEEE Conf. on ‘Micro Electro mechanical systems’, Miami Beach, FL, USA, January–February 2005, IEEE, 251–254.
  • Zhao Q, Wood JR, Wagner HD: ‘Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors’, Appl. Phys. Lett., 2001, 78, (12), 1748–1750.
  • Li Z, Dharap P, Nagarajaiah S, Barrera EV, Kim JD: ‘Carbon nanotube film sensors’, Adv. Mater., 2004, 16, (7), 640–643.
  • Kaul AB, Wong EW, Epp L, Hunt BD: ‘Electromechanical carbon nanotube switches for high-frequency applications’, Nano Lett., 2006, 6, (5), 942–947.
  • Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM: ‘Nanoelectromechanical switches with vertically aligned carbon nanotubes’, Appl. Phys. Lett., 2005, 87, (16), 163114.
  • Cruden BA, Cassell AM: ‘Vertically oriented carbon nanofiber based nanoelectromechanical switch’, IEEE Trans. Nanotechnol., 2006, 5, (4), 350–355.
  • Sharma P, Ahuja P: ‘Recent advances in carbon nanotube-based electronics’, Mater. Res. Bull., 2008, 43, (10), 2517–2526.
  • Li C, Thostenson ET, Chou TW: ‘Sensors and actuators based on carbon nanotubes and their composites: a review’, Compos. Sci. Technol., 2008, 68, (6), 1227–1249.
  • Kim P, Lieber CM: ‘Nanotubes nanotweezers’, Science, 1999, 286, (5447), 2148–2150.
  • Baughman RH, Cui C, Zakhidov AA, Igbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, de Rossi D, Rinzler AG, Jashinski O, Roth S, Kertesz M: ‘Carbon nanotube actuators’, Science, 1999, 284, (5418), 1340–1344.
  • Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C.-L, Lieber CM: ‘Carbon nanotube-based nonvolatile random access memory for molecular computing’, Science, 2000, 289, (5476), 94–97.
  • Lee J, Kim S: ‘Manufacture of a nanotweezer using a length controlled CNT arm’, Sensor. Actuat. A: Phys., 2005, 120, (1), 193–198.
  • Chang JY, Min BK, Kim J, Lee SJ, Lin LW: ‘Electrostatically actuated carbon nanowire nanotweezers’, Smart Mater. Struct., 2009, 18, (6), 065017.
  • Fung CKM, Xi N, Shanker B, Lai KWC: ‘Nanoresonant signal boosters for carbon nanotube based infrared detectors’, Nanotechnology, 2009, 20, (18), 185201.
  • Lai KWC, Xi N, Fung CKM, Chen H, Tarn T.-J: ‘Engineering the band gap of carbon nanotube for infrared sensors’, Appl. Phys. Lett., 2009, 95, (22), 221107.
  • Hanson GW: ‘Fundamental transmitting properties of carbon nanotube antennas’, IEEE Trans. Antennas Propag., 2005, 53, (11), 3426–3435.
  • Burke PJ, Li S, Yu Z: ‘Quantitative theory of nanowire and nanotube antenna performance’, IEEE Trans. Nanotechnol., 2006, 5, (4), 314–334.
  • Fichtner N, Russer P: ‘On the possibility of nanowire antennas’, Proc. 36th Eur. Microwave Conf., Manchester, UK, September 2006, IEEE, 870– 873.
  • Peng HB, Chang CW, Aloni S, Yuzvinsky TD, Zettl A: ‘Ultrahigh frequency nanotube resonators’, Phys. Rev. Lett., 2006, 97, (8), 087203.
  • Li M, Tang HX, Roukes ML: ‘Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications’, Nat. Nanotechnol., 2007, 2, (2), 114–120.
  • Jensen K, Kim K, Zettl A: ‘An atomic-resolution nanomechanical mass sensor’, Nat. Nanotechnol., 2008, 3, (9), 533–537.
  • Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead HG: ‘Enumeration of DNA molecules bound to a nanomechanical oscillator’, Nano Lett., 2005, 5, (5), 925–929.
  • Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR: ‘Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator’, Appl. Phys. Lett., 2007, 91, (12), 123121.
  • Xu Y, Lin J.-T, Alphenaar BW, Keynton RS: ‘Viscous damping of microresonators for gas composition analysis’, Appl. Phys. Lett., 2006, 88, (14), 143513.
  • Ru CQ: ‘Size effect of dissipative surface stress on quality factor of microbeams’, Appl. Phys. Lett., 2009, 94, (5), 051905.
  • Ergincan O, Palasantzas G, Kooi BJ: ‘Influence of random roughness on cantilever curvature sensitivity’, Appl. Phys. Lett., 2010, 96, (4), 041912.
  • Palasantzas G: ‘Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators’, J. Appl. Phys., 2008, 104, (5), 053524.
  • Waggoner PS, Tan CP, Craighead HG: ‘Microfluidic integration of nanomechanical resonators for protein analysis in serum’, Sens. Actuat. B: Chem., 2010, 150, 550–555.
  • Aubin KL, Park S.-M, Huang J, Craighead HG, Ilic BR: ‘Microfluidic encapsulated NEMS resonators for sensor applications’, Proc. 4th IEEE Sensors Conf., Irvine, CA, USA, October–November 2005, IEEE, 720–722.
  • Fennimore AM, Yuzvinsky TD, Han WQ, Fuhrer MS, Cumings J, Zetti A: ‘Rotational actuators based on carbon nanotubes’, Nature, 2003, 424, 408–410.
  • Wang ZL, Yang R, Zhou J, Qin Y, Xu C, Hu Y, Xu S: ‘Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics’, Mater. Sci. Eng. R, 2010, R70, (3–6), 320–329.
  • Chen MJ, Yu F, Hu LJ, Sun LF: ‘Recent progresses on the new condensed forms of single-walled carbon nanotubes and energy-harvesting devices’, Chin. Sci. Bull., 2012, 57, (2–3), 181–186.
  • Yang R, Qin Y, Dai LM, Wang ZL: ‘Power generation with laterally-packaged piezoelectric fine wires’, Nat. Nanotechnol., 2009, 4, (1), 34–39.
  • Yang R, Qin Y, Li C, Zhu G, Wang ZL: ‘Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator’, Nano Lett., 2009, 9, (3), 1201–1205.
  • Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL: ‘Self-powered nanowire devices’, Nat. Nanotechnol., 2010, 5, (5), 366–373.
  • Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H: ‘Molecular robots guided by prescriptive landscapes’, Nature, 2010, 465, (7295), 206–210.
  • Smith LM: ‘Nanotechnology: Molecular robots on the move’, Nature, 2010, 465, (7295), 167–168.
  • Edwards BC: ‘Design and deployment of a space elevator’, Acta Astronaut., 2000, 47, (10), 735–744.
  • Bolonkin A: ‘Non-rocket Earth-Moon transport system’, Adv. Space Res., 2003, 31, (11), 2485–2490.
  • Swan CW, Swan PA: ‘Why we need a space elevator’, Space Policy, 2006, 22, (2), 86–91.
  • Perek L: ‘Between a celestial body and a spacecraft: making the space elevator a success’, Space Policy, 2007, 23, (1), 3–6.
  • Matloff GL, Roseman P: ‘Lunar partial, non-stationary space elevators and maglevs: a new lunar launch option’, Acta Astronaut., 2009, 65, (3–4), 599–601.
  • Quine BM, Seth RK, Zhu ZH: ‘A free-standing space elevator structure: a practical alternative to the space tether’, Acta Astronaut., 2009, 65, (3–4), 365–375.
  • Williams P: ‘Dynamic multibody modeling for tethered space elevators’, Acta Astronaut., 2009, 65, (3–4), 399–422.
  • Meulenberg A, Poston T: ‘Sling-on-a-ring: structure for an elevator to LEO’, Phys. Proc., 2011, 20, 222–231.
  • Pugno NM: ‘The role of defects in the design of space elevator cable: from nanotube to megatube’, Acta Mater., 2007, 55, (15), 5269–5279.
  • Pugno NM: ‘Space elevator: out of order?’, Nano Today, 2007, 2, (6), 44–47.
  • Takeichi N: ‘Geostationary station keeping control of a space elevator during initial cable deployment’, Acta Astronaut., 2012, 70, 85–94.
  • Pugno N, Schwarzbart M, Steindl A, Troger H: ‘On the stability of the track of the space elevator’, Acta Astronaut., 2009, 64, (5–6), 524–537.
  • Grobert N: ‘Nanotubes – grow or go?’, Mater. Today, 2006, 9, (10), 64.
  • Bhadeshia HKDH: ‘Large chunks of very strong steel’, Mater. Sci. Technol., 2005, 21, (11), 1293–1302.
  • Pugno NM: ‘The strongest matter: ‘Einsteinon’ could be one billion times stronger than carbon nanotubes’, Acta Astronaut., 2008, 63, (5–6), 687–689.
  • Reguera G: ‘When microbial conversations get physical’, Trends Microbiol., 2011, 19, (3), 105–113.
  • Shiari B, Miller RE, Klug DD: ‘Multiscale simulation of material removal processes at the nanoscale’, J. Mech. Phys. Solids, 2007, 55, (11), 2384–2405.
  • Gotsmann B, Knoll AW, Pratt R, Frommer J, Hedrick JL, Duerig U: ‘Designing polymers to enable nanoscale thermomechanical data storage’, Adv. Funct. Mater., 2010, 20, 1276–1284.
  • Li X, Xie H, Kang Y, Wu X: ‘A brief review and prospect of experimental solid mechanics in China’, Acta Mech. Solida Sin., 2010, 23, (6), 498–548.
  • Thamwattana N, Hill JM, Baowan D, Cox BJ: ‘A review of mathematical and mechanical modelling in nanotechnology’, Math. Mech. Solids, 2010, 15, (7), 708–717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.