864
Views
26
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

p-type doping of ZnO films and growth of tenary ZnMgO and ZnCdO: application to light emitting diodes and laser diodes

&
Pages 61-83 | Received 22 Apr 2013, Accepted 30 Sep 2013, Published online: 19 Dec 2013

References

  • Pearton S. J., Norton D. P., Ip K., Heo Y. W. and Steiner T.: ‘Recent progress in processing and properties of ZnO’, Prog. Mater. Sci., 2005, 50, 293–340.
  • Özgür Ü, Alivov Y. I., Liu C., Teke A., Reshchikov M. A., Doan S., Avrutin V., Cho S.-J. and Morkoç H.: ‘A comprehensive review of ZnO materials and devices’, J. Appl. Phys., 2005, 98, 041301-1–041301-55.
  • Detchprohm T., Zhu M., Li Y., Zhao L., You S., Wetzel C., Preble E. A., Paskova T. and Hanser D.: ‘Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates’, Appl. Phys. Lett., 2010, 96, 051101-1–051101-3.
  • Crawford M. H.: ‘LEDs for solid-state lighting: performance challenges and recent advances,’ IEEE J. Sel. Top. Quantum Electron., 2009, 15, 1028–1040.
  • Liu J.-M.: ‘Photonic devices’, 2005, New York, NY, Cambridge University Press.
  • Choi Y. S., Kang J. W., Hwang D. K. and Park S. J.: ‘Recent advances in ZnO-based light-emitting diodes,’ IEEE Trans. Electron Devices, 2010, 57, 26–41.
  • Lee W.-J., Kang J. and Chang K. J.: ‘Electronic structure of phosphorus dopants in ZnO’, Physica B, 2006, 376–377, 699–702.
  • Look D.: ‘Electrical and optical properties of p-type ZnO,’ Semicond. Sci. Technol., 2005, 20, S55–S75.
  • Chichibu S. F., Onuma T., Kubota M., Uedono A., Sota T., Tsukazaki A., Ohtomo A. and Kawasaki M.: ‘Improvements in quantum efficiency of excitonic emissions of ZnO epilayers by the elimination of point defects,’ J. Appl. Phys., 2006, 99, 093505-1–093505-5.
  • Park C. H., Zhang S. B. and Wei S.-H.: ‘Origin of p-type doping difficulty in ZnO: the impurity perspective,’ Phys. Rev. B, 2002, 66, 073202-1–073202-4.
  • Van de Walle C. G.: ‘Hydrogen as a cause of doping in zinc oxide’, Phys. Rev. Lett., 2000, 85, 1012–1014.
  • Li Y., Heo Y. W., Kwon Y., Ip K., Pearton S. J. and Norton D. P.: ‘Transport properties of p-type phosphorus-doped (Zn,Mg)O grown by pulsed laser deposition’, Appl. Phys. Lett., 2005, 87, 72101–72103.
  • Fan J. C., Sreekanth K. M., Xie Z., Chang S. L. and Rao K. V.: ‘p-Type ZnO materials: theory, growth, properties and devices’, Prog. Mater. Sci., 2013, 58, 874–985.
  • Ibach H.: ‘Thermal expansion of Si and ZnO’, Phys. Status Solidi B, 1969, 33, 257–261.
  • Minegishi K., Koiwai Y., Kikuchi Y., Yano K., Kasuga M. and Shimizu A.: ‘Growth of p-type zinc oxide films by chemical vapor deposition,’ Jpn. J. Appl. Phys., 1997, 36, L1453–L1455.
  • Guo X. L., Tabata H. and Kawai T.: ‘Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source,’ J. Cryst. Growth, 2001, 223, 135–140.
  • Look D. C., Reynolds D., Litton C. W., Jones R. L., Eason D. B. and Cantwell G.: ‘Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,’ Appl. Phys. Lett., 2002, 81, 1830–1832.
  • Zeuner A., Alves H., Hofmann D. M., Meyer B. K., Hoffmann A., Haboeck U., Strassburg M. and Dworzak M.: ‘Optical properties of the nitrogen acceptor in epitaxial ZnO’, Phys. Status Solidi B, 2002, 234, R7–R9.
  • Aoki T., Hatanaka Y. and Look D. C.: ‘ZnO diode fabricated by excimer-laser doping,’ Appl. Phys. Lett., 2000, 76, 3257–3259.
  • Pike G. E., Kurtz S. R., Gourley P. L., Philipp H. R. and Levinson L. M.: ‘Electroluminescence in ZnO varistors: evidence for hole contributions to the breakdown mechanism’, J. Appl. Phys., 1985, 57, 5512–5517.
  • Mahan G. D., Levinson L. M. and Philipp H. R.: ‘Theory of conduction in ZnO varistors’, J. Appl. Phys., 1979, 50, 2799–2803.
  • Ryu Y. R., Zhu S., Look D. C., Wrobel J. M., Jeong H. M. and White H. W.: ‘Synthesis of p-type ZnO films,’ J. Cryst. Growth, 2000, 216, 330–334.
  • Kim K. K., Kim H. S., Hwang D. K., Lim J. H. and Park S. J.: ‘Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant,’ Appl. Phys. Lett., 2003, 83, 63–65.
  • Look D. C. and Claflin B.: ‘p-Type doping and devices based on ZnO,’ Phys. Status Solidi B, 2004, 241, 624–629.
  • Tsukazaki A., Ohtomo A., Onuma T., Ohtani M., Makino T., Sumiya M., Ohtani K., Chichibu S. F., Fuke S., Segawa Y., Ohno H., Koinuma H. and Kawasaki M.: ‘Blue light-emitting diode based on ZnO,’ Nat. Mater., 2005, 4, 42–44.
  • Barnes T. M., Olson K. and Wolden C. A.: ‘On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide’, Appl. Phys. Lett., 2005, 86, 112112-1–112112-3.
  • Sun J. W., Lu Y. M., Liu Y. C., Shen D. Z., Zhang Z. Z., Yao B., Li B. H., Zhang J. Y., Zhao D. X. and Fan X. W.: ‘Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy’, J. Appl. Phys., 2007, 102, 043522-1–043522-5.
  • Meyer B. K., Sann J., Hofmann D. M., Neumann C. and Zeuner A.: ‘Shallow donors and acceptors in ZnO’, Semicond. Sci. Technol., 2005, 20, S62–S66.
  • Reuss F., Kirchner C., Gruber T., Kling R., Maschek S., Limmer W., Waag A. and Ziemann P.: ‘Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO’, J. Appl. Phys., 2004, 95, 3385–3390.
  • Wang L. and Giles N. C.: ‘Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy’, Appl. Phys. Lett., 2004, 84, 3049–3051.
  • Lautenschlaeger S., Hofmann M., Eisermann S., Haas G., Pinnisch M., Laufer A. and Meyer B. K.: ‘A model for acceptor doping in ZnO based on nitrogen pair formation’, Phys. Status Solidi B, 2011, 248, 1217–1221.
  • Friedrich F., Gluba M. A. and Nickel N. H.: ‘Identification of nitrogen and zinc related vibrational modes in ZnO’, Appl. Phys. Lett., 2009, 95, 141903–141905.
  • Limpijumnong S., Li X., Wei S.-H. and Zhang S. B.: ‘Substitutional diatomic molecules NO, NC, CO, N2, and O2: their vibrational frequencies and effects on p-doping of ZnO’, Appl. Phys. Lett., 2005, 86, 211910.
  • Perkins C. L., Lee S. H., Li X. N., Asher S. E. and Coutts T. J.: ‘Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy’, J. Appl. Phys., 2005, 97, 034907–034910.
  • Liu H. Y., Izyumskaya N., Avrutin V., Özgür Ü, Yankovich A. B., Kvit A. V., Voyles P. M. and Morkoç H.: ‘Donor behavior of Sb in ZnO’, J. Appl. Phys., 2012, 112, 033706-1–033706-4.
  • Wahl U., Rita E., Correia J. G., Marques A. C., Alves E., Soares J. C. and ISOLDE Collaboration: ‘Direct evidence for As as a Zn-site impurity in ZnO’, Phys. Rev. Lett., 2005, 95, 215503-1–215503-3.
  • Wahl U., Correia J. G., Mendonca T. and Decoster S.: ‘Direct evidence for Sb as a Zn site impurity in ZnO’, Appl. Phys. Lett., 2009, 94, 261901-1–261901-3.
  • Zhu B. L., Zhu S. J., Zhao X. Z., Su F. H., Li G. H., Wu X. G. and Wu J.: ‘Characteristics of undoped and Sb-doped ZnO thin films prepared in different atmospheres by pulsed laser deposition’, Phys. Status Solidi A, 2011, 208, 843–846.
  • Lee E.-C., Kim Y. S., Jin Y. G. and Chang K. J.: ‘Compensation mechanism for N acceptors in ZnO’, Phys. Rev. B, 2001, 64, 085120-1–085120-6.
  • Aoki T., Shimizu Y., Miyake A., Nakamura A., Nakanishi Y. and Hatanaka Y.: ‘p-Type ZnO layer formation by excimer laser doping’, Phys. Status Solidi B, 2002, 229, 911–915.
  • Chu S., Zhao J. Z., Zuo Z., Kong J. Y., Li L. and Liu J. L.: ‘Enhanced output power using MgZnO/ZnO/MgZnO double heterostructure in ZnO homojunction light emitting diode’, J. Appl. Phys., 2011, 109, 123110–123116.
  • Mandalapu L. J., Yang Z., Xiu F. X., Zhao D. T. and Liu J. L.: ‘Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection’, Appl. Phys. Lett., 2006, 88, 092103.
  • Vaithianathan V., Lee B. T. and Kim S. S.: ‘Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition,’ Appl. Phys. Lett., 2005, 86, 062101-1–062101-3.
  • Heo Y. W., Park S. J., Ip K., Pearton S. J. and Norton D. P.: ‘Transport properties of phosphorus-doped ZnO thin films,’ Appl. Phys. Lett., 2003, 83, 1128–1130.
  • Miao Y., Ye Z. Z., Xu W. Z., Chen F. G., Zhou X. C., Zhao B. H., Zhu L. P. and Lu J. G.: ‘p-Type conduction in phosphorus-doped ZnO thin films by MOCVD and thermal activation of the dopant,’ Appl. Surf. Sci., 2006, 252, 7953–7957.
  • Ip K., Heo Y. W., Norton D. P., Pearton S. J., LaRoche J. R. and Ren F.: ‘Zn0·9Mg0·1O/ZnO p-n junctions grown by pulsed-laser deposition,’ Appl. Phys. Lett., 2004, 85, 1169–1171.
  • Claflin B., Look D. C., Park S. J. and Cantwell G.: ‘Persistent n-type photoconductivity in p-type ZnO’, J. Cryst. Growth, 2006, 287, 16–22.
  • Limpijumnong S., Zhang S. B., Wei S.-H. and Park C. H.: ‘Doping by large-size-mismatched impurities: the microscopic origin of arsenic- or antimony-doped p-type zinc oxide’, Phys. Rev. Lett., 2004, 92, 155504-1–155504-3.
  • Hwang D.-K., Oh M.-S., Lim J.-H. and Park S.-J.: ‘ZnO thin films and light-emitting diodes’, J. Phys. D, 2007, 40, R387–R412.
  • Ohta H., Kawamura K., Orita M., Hirano M., Sarukura N. and Hosono H.: ‘Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO’, Appl. Phys. Lett., 2000, 77, 475–477.
  • Janotti A. and Van de Walle C. G.: ‘Fundamentals of zinc oxide as a semiconductor’, Rep. Prog. Phys., 2009, 72, 126501–126531.
  • Oba F., Choi M., Togo A. and Tanaka I.: ‘Point defects in ZnO: an approach from first principles’, Sci. Technol. Adv. Mater., 2011, 12, 034302–034319.
  • Ohta H., Orita M., Hirano M. and Hosono H.: ‘Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO’, J. Appl. Phys., 2001, 89, 5720–5725.
  • Thonke K., Gruber T., Teofilov N., Schönfelder R., Waag A. and Sauer R.: ‘Donor–acceptor pair transitions in ZnO substrate material’, Phys. B, 2001, 308–310, 945–948.
  • Lautenschlaeger S., Eisermann S., Meyer B. K., Callison G., Wagner M. R. and Hoffmann A.: ‘Nitrogen incorporation in homoepitaxial ZnO CVD epilayers’, Phys. Status Solidi RRL, 2009, 3, 16–18.
  • Li J., Wei S.-H., Li S.-S. and Xia J.-B.: ‘Design of shallow acceptors in ZnO: first-principles band-structure calculations’, Phys. Rev. B, 2006, 74, 081201-R1–081201-R4.
  • Lany S. and Zunger A.: ‘Generalized Koopmans density functional calculations reveal the deep acceptor state of NO in ZnO’, Phys. Rev. B, 2010, 81, 205209-1–205209-4.
  • Lyons J. L., Janotti A. and Van de Walle C. G.: ‘Why nitrogen cannot lead to p-type conductivity in ZnO’, Appl. Phys. Lett., 2009, 95, 252105-1–252105-3.
  • Stehr J. E., Hofmann D. M. and Meyer B. K.: ‘Electron paramagnetic resonance and photo-electron paramagnetic resonance investigation on the recharging of the substitutional nitrogen acceptor in ZnO’, J. Appl. Phys., 2012, 112, 103511-1–103511-5.
  • Selim F. A., Weber M. H., Solodovnikov D. and Lynn K. G. ‘Nature of native defects in ZnO’, Phys. Rev. Lett., 2007, 99, 085502-1–085502-4.
  • McCluskey M. D. and Jokela S. J.: ‘Defects in ZnO’, J. Appl. Phys., 2009, 106, 071101-1–071101-15.
  • Janotti A. and Van de Walle C. G.: ‘Native point defects in ZnO’, Phys. Rev. B, 2007, 76, 165202-1–165202-5.
  • Lee E.-C. and Chang K. J.: ‘Possible p-type doping with group-I elements in ZnO’, Phys. Rev. B, 2004, 70, 115210-1–115210-4.
  • Puchala B. and Morgan D. M.: ‘Stable interstitial dopant–vacancy complexes in ZnO’, Phys. Rev. B, 2012, 85, 195207-1–195207-5.
  • Avrutin V., Silversmith D. and Morkoc H.: ‘Doping asymmetry problem in ZnO: current status and outlook’, Proc. IEEE, 2009, 98, 1269–1280.
  • Yan Y. F., Li J., Wei S. H. and Al-Jassim M. M.: ‘Possible approach to overcome the doping asymmetry in wide bandgap semiconductors’, Phys. Rev. Lett., 2007, 98, 135506-1–135506-4.
  • Look D. C., Leedy K. D., Vines L., Svensson B. G., Zubiaga A., Tuomisto F., Doutt D. R. and Brillson L. J.: ‘Self-compensation in semiconductors: the Zn vacancy in Ga-doped ZnO’, Phys. Rev. B, 2011, 84, 115202-1–115202-5.
  • Schmidt M., Ellguth M., Czekalla C., Wenckstern H. V., Pickerhain R., Grundmann M., Brauer G., Skorupa W., Helm M., Gu Q. and Ling C. C.: ‘Defects in zinc-implanted ZnO thin films’, J. Vac. Sci. Technol. B, 2009, 27, 1597–1601.
  • Schmidt M., Ellguth M., Karsthof R., Wenckstern H. V., Pickenhain R., Grundmann M., Brauer G. and Ling C. C.: ‘On the T2 trap in zinc oxide thin films’, Phys. Status Solidi A, 2012, 249, 588–591.
  • Brauer G., Anwand W., Grambole D., Grenzer J., Skorupa W., Čížek J., Kuriplach J., Procházka I., Ling C. C., So C. K., Schulz D. and Klimm D.: ‘Identification of Zn-vacancy–hydrogen complexes in ZnO single crystals: a challenge to positron annihilation spectroscopy’, Phys. Rev. B, 2009, 79, 115212-1–115212-5.
  • Tuomisto F., Ranki V., Saarinen K. and Look D. C.: ‘Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO’, Phys. Rev. Lett., 2003, 91, 205502-1–205502-3.
  • Tuomisto F., Saarinen K., Look D. C. and Farlow G. C.: ‘Introduction and recovery of point defects in electron-irradiated ZnO’, Phys. Rev. B, 2005, 72, 085206-1–085206-5.
  • Zubiaga A., Garcia J. A., Plazaola F., Tuomisto F., Saarinen K., Zuñiga-Pérez J. and Muñoz-SanJosé V.: ‘Correlation between Zn vacancies and photoluminescence emission in ZnO films’, J. Appl. Phys., 2006, 99, 053516.
  • Knutsen K. E., Galeckas A., Zubiaga A., Tuomisto F., Farlow G. C., Svensson B. G. and Kuznetsov A. Y.: ‘Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation’, Phys. Rev. B, 2012, 86, 121203-1–121203-5.
  • Johansen K. M., Zubiaga A., Makkonen I., Tuomisto F., Neuvonen P. T., Knutsen K. E., Monakhov E., Kuznetsov A. Y. and Svensson B. G.: ‘Identification of substitutional Li in n-type ZnO and its role as an acceptor’, Phys. Rev. B, 2011, 83, 245208.
  • Johansen K. M., Zubiaga A., Tuomisto F., Monakhov E. V., Kuznetsov A. Y. and Svensson B. G.: ‘H passivation of Li on Zn-site in ZnO: positron annihilation spectroscopy and secondary ion mass spectrometry’, Phys. Rev. B, 2011, 84, 115203-1–115203-5.
  • Demchenko D. O., Earles B., Liu H. Y., Avrutin V., Izyumskaya N., Özgür Ü and Morkoç H.: ‘Impurity complexes and conductivity of Ga-doped ZnO’, Phys. Rev. B, 2011, 84, 075201-1–075201-5.
  • Alivov Y. I., Van Nostrand J. E., Look D. C., Chukichev M. V. and Ataev B. M.: ‘Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes’, Appl. Phys. Lett., 2003, 83, 2943–2945.
  • Alivov Y. I., Kalinina E. V., Cherenkov A. E., Look D. C., Ataev B. M., Omaev A. K., Chukichev M. V. and Bagnall D. M.: ‘Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates’, Appl. Phys. Lett., 2003, 83, 4719–4721.
  • Osinsky A., Dong J. W., Kauser M. Z., Hertog B., Dabiran A. M., Chow P. P., Pearton S. J., Lopatiuk O. and Chernyak L.: ‘Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates’, Appl. Phys. Lett., 2004, 85, 4272–4275.
  • Chichibu S. F., Ohmori T., Shibata N., Koyama T. and Onuma T.: ‘Greenish-white electroluminescence from p-type CuGaS2 heterojunction diodes using n-type ZnO as an electron injector’, Appl. Phys. Lett., 2004, 85, 4403–4405.
  • Chu S., Olmedo M., Yang Z., Kong J. Y., Liu J. L.: ‘Electrically pumped ultraviolet ZnO diode lasers on Si’, Appl Phys Lett, 2008, 93, 181106-1–181106-3.
  • Chu S., Lim J. H., Mandalapu L. J., Yang Z., Li L., Liu J. L.: ‘Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes’, Appl. Phys. Lett., 2008, 92, 152103-1–152103-3.
  • Ryu Y., Lee T.-S., Lubguban J. A., White H. W., Kim B.-J., Park Y.-S. and Youn C.-J.: ‘Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes’, Appl. Phys. Lett., 2006, 88, 241108-1–241108-3.
  • Ryu Y. R., Lubguban J. A., Lee T. S., White H. W., Jeong T. S., Youn C. J. and Kim B. J.: ‘Excitonic ultraviolet lasing in ZnO-based light emitting devices’, Appl. Phys. Lett., 2007, 90, 131115-1–131115-3.
  • Tsukazaki A., Kubota M., Ohtomo A., Onuma T., Ohtani K., Ohno H., Chichibu S. F. and Kawasaki M.: ‘Blue light-emitting diode based on ZnO’, Jpn. J. Appl. Phys., 2005, 44, L643–L645.
  • Kato H., Yamamuro T., Ogawa A., Kyotani C., Sano M.: ‘Impact of mixture gas plasma of N2 and O2 as the N source on ZnO-based ultraviolet light-emitting diodes fabricated by molecular beam epitaxy’, Appl. Phys. Exp., 2011, 4, 091105-1–091105-3.
  • Lim J. H., Kang C. K., Kim K. K., Park I. K., Hwang D. K., Park S. J.: ‘UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering’, Adv. Mater., 2006, 18, 2720–2724.
  • Kim H. S., Lugo F., Pearton S. J., Norton D. P., Wang Y.-L. and Ren F.: ‘Phosphorus doped ZnO light emitting diodes fabricated via pulsed laser deposition’, Appl. Phys. Lett., 2008, 92, 112108-1–112108-3.
  • Park T. Y., Choi Y. S., Kim S. M., Jung G. Y., Park S. J., Kwon B. J. and Cho Y. H.: ‘Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN’, Appl. Phys. Lett., 2011, 98, 251111-1–251111-3.
  • Mares J. W., Falanga M., Thompson A. V., Osinsky A., Xie J. Q., Hertog B., Dabiran A., Chow P. P., Karpov S. and Schoenfeld W. V.: ‘Hybrid CdZnO/GaN quantum-well light emitting diodes,’ J. Appl. Phys., 2008, 104, (9), 093107-1–093107-4.
  • Jiao S. J., Zhang Z. Z., Lu Y. M., Shan D. Z., Yao B., Zhang J. Y., Li B. H., Zhao D. X., Fan X. W. and Tang Z. K.: ‘ZnO p-n junction light-emitting diodes fabricated on sapphire substrates’, Appl. Phys. Lett., 2006, 88, 031911-1–031911-3.
  • Zeng Y. J., Ye Z. Z., Lu Y. F., Xu W. Z., Zhu L. P., Huang J. Y., He H. P. and Zhao B. H.: ‘Plasma-free nitrogen doping and homojunction light-emitting diodes based on ZnO,’ J. Phys. D: Appl. Phys., 2008, 41, 165104-1–165104-5.
  • Zhao J. Z., Liang H. W., Sun J. C., Bian J. M., Feng Q. J., Hu L. Z., Zhang H. Q., Liang X. P., Luo Y. M. and Du G. T.: ‘Electroluminescence from n-ZnO/p-ZnO:Sb homojunction light emitting diode on sapphire substrate with metal–organic precursors doped p-type ZnO layer grown by MOCVD technology,’ J. Phys. D: Appl. Phys., 2008, 41, 195110-1–195110-4.
  • Zhang C., Zhang F., Xia T., Kumar N., Hahm J., Liu J., Wang Z. L. and Xu J.: ‘Low-threshold two-photon pumped ZnO nanowire lasers,’ Opt. Express, 2009, 17, 7893–7900.
  • Nakahara K., Akasaka S., Yuji H., Tamura K., Fujii T., Nishimoto Y., Takamizu D., Sasaki A., Tanabe T., Amaike H., Onuma T., Chichibu S. F., Tsukazaki A., Ohmoto A. and Kawasaki M.: ‘Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates’, Appl. Phys. Lett., 2010, 97, 013501-1–013501-3.
  • Lany S., Osorio-Guillén J. and Zunger A.: ‘Origins of the doping asymmetry in oxides: hole doping in NiO versus electron doping in ZnO’, Phys. Rev. B, 2007, 75, 241203-1–241203-5.
  • Ozgur U. and Morkoc H.: ‘Optical properties of ZnO and related alloys’, in ‘ZnO bulk, thin films and nanostructures’, (eds. C. Jagadish and S. J. Pearton), 175–240; 2006, Amsterdam, Elsevier.
  • Bagnall D. M., Chen Y. F., Shen M. Y., Zhu Z., Goto T. and Yao T.: ‘Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE’, J. Cryst. Growth, 1998, 184–185, 605–609.
  • Bagnall D. M., Chen Y. F., Zhu Z., Yao T., Koyama S., Shen M. Y. and Goto T.: ‘Optically pumped lasing of ZnO at room temperature’, Appl. Phys. Lett., 1997, 70, 2230–2232.
  • Choopun S., Vispute R. D., Wang W., Sharma R. P., Venkatesan T. and Shen H.: ‘Realization of band gap above 5·0 eV in metastable cubic-phase MgxZn1–xO alloy films’, Appl. Phys. Lett., 2002, 80, 1529–1531.
  • Ohtomo A., Kawasaki M., Koida T., Masubuchi K., Koinuma H., Sakurai Y., Yoshida Y., Yasuda T. and Segawa Y.: ‘MgxZn1 – xO as a II–VI widegap semiconductor alloy’, Appl. Phys. Lett., 1998, 72, 2466–2468.
  • Ip K., Thaler G. T., Yang H., Han S. Y., Li Y., Norton D. P., Pearton S. J., Jang S. and Ren F.: ‘Contacts to ZnO’, J. Cryst. Growth, 2006, 287, 149–156.
  • Brillson L. J. and Lu Y.: ‘ZnO Schottky barriers and Ohmic contacts’, J. Appl. Phys., 2011, 109, 121301-1–121301-33.
  • Look D. C.: ‘Quantitative analysis of surface donors in ZnO’, Surf. Sci., 2007, 601, 5315.
  • Wang Y.-L., Kim H. S., Norton D. P., Pearton S. J. and Ren F.: ‘Dielectric passivation effects on ZnO light emitting diodes’, Appl. Phys. Lett., 2008, 92, 112101-1–112101-3.
  • Wang H.-T., Kang B. S., Chen J.-J., Anderson T., Jang S., Ren F., Kim H. S., Li Y. J., Norton D. P. and Pearton S. J.: ‘Band-edge electroluminescence from N+-implanted bulk ZnO’, Appl. Phys. Lett., 2006, 88, 102107-1–102107-3.
  • Schmidt-Grund R., Rheinländer B., Czekalla C., Benndorf G., Hochmuth H., Lorenz M. and Grundmann M.: ‘Exciton–polariton formation at room temperature in a planar ZnO resonator structure’, Appl. Phys. B, 2008, 93, 331–337.
  • Nakayama M., Komura S., Kawase T. and Kim D.: ‘Observation of exciton polaritons in a ZnO microcavity with HfO2/SiO2 distributed Bragg reflectors’, J. Phys. Soc. Jpn., 2008, 77, 093705-1–093705-5.
  • Médard F., Lagarde D. Zúñiga-Pére J., Disseix P., Mihailovic M., Leymarie J., Frayssinet E., Moreno J. C., Semond F., Leroux M. and Bouchoule S.: ‘Influence of the excitonic broadening on the strong light-matter coupling in bulk zinc oxide microcavities’, J. Appl. Phys., 2010, 108, 043508-1–043508-5.
  • Lanty G., Zhang S., Lauret J. S., Deleporte E., Audebert P., Bouchoule S., Lafosse X., Zuñiga-Pérez J., Semond F., Lagarde D., Médard F. and Leymarie J.: ‘Hybrid cavity polaritons in a ZnO-perovskite microcavity’, Phys. Rev. B, 2011, 84, 195449-1–195449-6.
  • Kalusniak S., Sadofev S., Halm S. and Henneberger F.: ‘Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity’, Appl. Phys. Lett., 2011, 98, 011101-1–011101-3.
  • Halm S., Kalusniak S., Sadofev S., Wünsche H.-J. and Henneberger F.: ‘Strong exciton-photon coupling in a monolithic ZnO/(Zn,Mg)O multiple quantum well microcavity’, Appl. Phys. Lett., 2011, 99, 181121-1–181121-3.
  • Schnitzer I., Yablonovitch E., Caneau C., Gmitter T. J. and Scherer A.: ‘30% External quantum efficiency from surface textured, thin-film light-emitting diodes’, Appl. Phys. Lett., 1993, 63, 2174–2176.
  • Biteen J. S., Pacifici D., Lewis N. S. and Atwaer H. A.: ‘Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters’, Nano Lett., 2005, 5, 1768–1773.
  • Okamoto K., Niki I., Shvartser A., Narukawa Y., Mukai T. and Scherer A.: ‘Surface-plasmon-enhanced light emitters based on InGaN quantum wells’, Nat. Mater., 2004, 3, 601–605.
  • Okamoto K., Niki I., Scherer A., Narukawa Y., Mukai T. and Kawakami Y.: ‘Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy’, Appl. Phys. Lett., 2005, 87, 071102-1–071102-3.
  • Kwon M.-K., Kim J.-Y., Kim B.-K., Park I.-K., Cho C.-Y., Byeon C. C. and Park S.-J.: ‘Surface-plasmon-enhanced light-emitting diodes’, Adv. Mater., 2008, 20, 1253–1257.
  • Reynolds J. G., Reynolds C. L. Jr, Mohanta A., Muth J. F., Rowe J. E., Everitt H. O. and Aspnes D. E.: ‘Shallow acceptor complexes in p-type ZnO’, Appl. Phys. Lett., 2013, 102, 152114-1–152114-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.