3,402
Views
236
CrossRef citations to date
0
Altmetric
Research Paper

Recent progress in magnesium–lithium alloys

, , , , , & show all
Pages 65-100 | Received 18 Feb 2014, Accepted 29 Aug 2014, Published online: 12 Sep 2014

References

  • Regener D, Dietze G, Schroder A and Pinkernelle A: ‘The microstructure and mechanical properties of pressure die cast magnesium–lithium alloys’, Pract. Metall., 2007, 44, 441–444.
  • Ramesh C, Sakai T, Kamado S, Kojima Y and Matsuzawa K: ‘Semi-solid forming of Mg–Li–Al–Ca light metal alloys’, J. Jpn. Inst. Light Met., 1998, 48, (1), 13–18.
  • Meschter PJ and O’Neal JE: ‘Rapid solidification processing of magnesium–lithium alloys’, Metall. Trans. A, 1984, 15, 237–240.
  • Matsuda A, Wan CC, Yang JM and Kao WH: ‘Rapid solidification processing of a Mg–Li–Si–Ag alloy’, Metall. Mater. Trans. A, 1996, 27, 1363–1370.
  • Haferkamp H, Boehm R, Holzkamp U and Jaschik C: ‘Alloy development, processing and applications in magnesium lithium alloys’, Mater. Trans., 2001, 42, 1160–1166.
  • Fujitani W and Umakoshi Y: ‘Softening and recrystallization behavior of Mg-Li and Mg–Li–Zr alloys’, J. Jpn. Inst. Light Met., 1996, 46, (1), 3–8.
  • Li HB, Ji HB, Yao GC, Liu YH, Liu ZG and Liang CL: ‘Study of rolling, heat treatment characteristics and mechanical properties of superlight Mg–Li–Zn alloys’, Magnesium Technol., 2006, 2006, 415–419.
  • Hatta H, Chandran R, Kamado S and Kojima Y: ‘Effect of additional elements on heat treatment characteristics and mechanical properties of superlight Mg–Li–Al alloys’, J. Jpn. Inst. Light Met., 1997, 47, (4), 202–207.
  • Li HB, Yao GC, Liu YH and Ji HB: ‘Microstructures and properties of superlight Mg–Li–Al wrought alloys as cold-rolling and annealing states’, J. Funct. Mater., 2005, 36, (4), 525–528.
  • Hatta H, Li Z, Kamado S and Kojima Y: ‘Workability, heat treatment characteristics and mechanical properties of Mg–Li–Al and Mg–Li–Zn ternary alloys’, J. Jpn. Inst. Light Met., 1995, 45, (12), 702–707.
  • Matsuzawa K, Koshihara T and Kojima Y: ‘Age-hardening and mechanical properties of Mg–Li–Al alloys’, J. Jpn. Inst. Light Met., 1989, 39, (1), 45–51.
  • Zhong H, Liu P, Zhou T and Li H: ‘Design of an age hardening Mg–Li alloy and its aging behavior’, J. Univ. Sci. Techn. Beijing: Mineral Metall. Mater., 2005, 12, (2), 182–186.
  • Ma CJ, Zhang D and Hu WB: ‘Aging behavior of Mg–Li–AI alloys’, Trans. Nonferrous Met. Soc. China, 1999, 9, (4), 772–777.
  • Wu RZ, Deng YS and Zhang ML: ‘Microstructure and mechanical properties of Mg–5Li–3Al–2Zn–xRE alloys’, J. Mater. Sci., 2009, 44, 4132–4139.
  • Wu RZ, Qu ZK and Zhang ML: ‘Effects of the addition of Y in Mg–8Li–(1,3)Al alloy’, Mater. Sci. Eng., A, 2009, 516, 96–99.
  • Wu RZ, Wang CG and Zhang ML: ‘Behaviour of calcium in Mg–6Li–3Al alloy’, Kovove Mater., 2009, 47, 169–174.
  • Cui CL, Wu LB, Wu RZ, Zhang JH and Zhang ML: ‘Influence of yttrium on microstructure and mechanical properties of as-cast Mg–5Li–3Al–2Zn alloy’, J. Alloys Compd., 2011, 509, 9045–9049.
  • Alamo A and Banchik AD: ‘Precipitation phenomena in the Mg-31at% Li-1at% Al alloy’, J. Mater. Sci., 1980, 15, (1), 222–229.
  • Song GS, Staiger M and Kral M: ‘Some new characteristics of the strengthening phase in β-phase magnesium–lithium alloys containing aluminum and beryllium’, Mater. Sci. Eng., A, 2004, 371, 271–376.
  • Qu ZK, Wu RZ, Zhan HB and Zhang ML: ‘The solution and room temperature aging behavior of Mg–9Li–xAl(x = 3, 6) alloys’, J. Alloys Compd., 2012, 536, 145–149.
  • Saito N, Mabuchi M, Nakanishi M and Kubota K: ‘and Higashi: The aging behavior and the mechanical properties of the Mg–Li–Al–Cu alloy’, Scrip. Mater., 1997, 36, (5), 551–555.
  • Li JQ, An JM, Qu ZK, Wu RZ, Zhang JH and Zhang ML: ‘Effects of solution heat treatment on the microstructure and hardness of Mg–5Li–3Al–2Zn–2Cu alloy’, Mater. Sci. Eng., A, 2010, 527, 7138–7142.
  • Li JQ, Qu ZK, Wu RZ and Zhang ML: ‘Effects of Cu addition on the microstructure and hardness of Mg–5Li–3Al–2Zn alloy’, Mater. Sci. Eng., A, 2010, 527, 2780–2783.
  • Li JQ, Qu ZK, Wu RZ, Zhang ML and Zhang JH: ‘Microstructure, mechanical properties and aging behaviors of as-extruded Mg-5Li–3Al–2Zn–1·5Cu alloy’, Mater. Sci. Eng. A, 2011, 528, 3915–3920.
  • Wu RZ and Zhang ML: ‘Microstructure, mechanical properties and aging behavior of Mg-5Li-3Al-2Zn-xAg’, Mater. Sci. Eng., A, 2009, 520, 36–39.
  • Wu HY, Gao ZW, Lin JY and Chiu CH: ‘Effects of minor scandium addition on the properties of Mg–Li–Al–Zn alloy’, J. Alloys Compd., 2009, 474, 158–163.
  • Le QZ, Cui JZ and Li HW: ‘Quenching and aging behaviors of Mg–Li–Zn alloy’, Trans. Nonferrous Met. Soc. China, 1997, 7, (3), 43–44.
  • Yamamoto A, Ashida T, Kouta Y, Bae KK, Fukumoto S and Tsubakino H: ‘Precipitation in Mg-(4–13)% Li-(4–5)% Zn ternary alloys’, Mater. Trans., 2003, 44, (4), 619–624.
  • Hansen F, Schuermann E and Frommeyer G: ‘Deformation and strengthening of multiphase magnesium lithium aluminium alloys’, Metall., 1986, 40, (2), 146–148.
  • Lin NY, Wu HY, Zhou GZ, Chiu CH and Lee S: ‘Mechanical and anisotropic behaviors of Mg–Li–Zn alloy thin sheets’, Mater. Des., 2008, 29, 2061–2065.
  • Wu HY and Zhou GZ: ‘Plastic anisotropy and strain-hardening behavior of Mg–6%Li–1%Zn alloy thin sheet at elevated temperatures’, J. Mater. Sci., 2009, 44, 6182–6186.
  • Hsu CC, Wu HY, Zhou GZ, Chiu CH and Lee S: ‘Deformation behaviour and formability of LZ90 Mg alloy’, Mater. Sci. Technol., 2008, 24, (5), 607–611.
  • Trojanova Z, Drozd Z, Lukac P and Chmelik F: ‘Deformation behaviour of Mg–Li alloys at elevated temperatures’, Mater. Sci. Eng., A, 2005, 41, (0–411), 148–151.
  • Drozd Z, Trojanova Z and Kudela S: ‘Deformation behaviour of Mg–Li–Al alloys’, J. Alloys Compd., 2004, 378, 192–195.
  • Takuda H, Kikuchi S, Tsukada T, Kubota K and Hatta N: ‘Effect of strain rate on deformation behaviour of a Mg–8·5Li–1Zn alloy sheet at room temperature’, Mater. Sci. Eng., A, 1999, 271, 251–256.
  • Takuda H, Enami T, Kubota K and Hatta N: ‘The formability of a thin sheet of Mg–8·5Li–1Zn alloy’, J. Mater. Process Technol., 2000, 101, 281–286.
  • Takuda H, Matsusaka H, Kikuchi S and Kubota K: ‘Tensile properties of a few Mg–Li–Zn alloy thin sheets’, J. Mater. Sci., 2002, 37, 51–57.
  • Sivakesavam O and Prasad YVRK: ‘Processing map for hot working of hot rolled Mg–11·5Li–1·5Al alloy’, Mater. Res. Adv. Technol., 2002, 93, (2), 123–127.
  • Sivakesavam O and Prasad YVRK: ‘Processing map for hot working of hot-rolled Mg–11·5Li–1·5Al–0·15Zr alloy’, Mater. Res. Adv. Technol., 2002, 93, (9), 913–917.
  • Sivakesavam O and Prasad YVRK: ‘Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg–11·5Li–1·5Al alloy’, Mater. Sci. Eng., A, 2002, 323, 270–277.
  • Kojima Y, Inoue M and Tanno O: ‘Superplasticity of Mg–Li alloy’, J. Jpn. Inst. Met., 1990, 54, (3), 354–355.
  • Higashi K and Wolfenstine J: ‘Microstructural evolution during superplastic flow of a binary Mg–8·5 wt.% Li alloy’, Mater. Lett., 1991, 10, 329–332.
  • Metenier P, González-Doncel G, Ruano OA, Wolfenstine J and Sherby OD: ‘Superplastic behavior of a fine-grained two-phase Mg–9wt.%Li alloy’, Mater. Sci. Eng., A, 1990, 125, 195–202.
  • Taleff EM, Ruano OA, Wolfenstine J and Sherby OD: ‘Superplastic behavior of a fine-grained Mg–9Li material at low homologous temperature’, J. Mater. Res., 1992, 7, (8), 2131–2135.
  • Fujitani W, Furushhiro N, Hori S and Kumeyam K: ‘Microstructural change during superplastic deformation of the Mg–8 mass%Li alloy’, J. Jpn. Inst. Light Met., 1992, 42, (3), 125–131.
  • Cao FR, Ding H, Li YL, Zhou G and Cui JZ: ‘Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium–lithium alloys’, Mater. Sci. Eng., A, 2010, 527, 2336–2341.
  • Dong SL, Imai T, Lim SW, Kanetake N and Saito N: ‘Superplasticity evaluation in an extruded Mg–8·5Li alloy’, J. Mater. Sci., 2007, 42, 5296–5298.
  • Dong SL, Imai T, Lim SW, Kanetake N, Saito N and Shigematsu I: ‘Superplasticity in Mg–Li–Zn alloys processed by high ratio extrusion’, Mater. Manuf. Processes, 2008, 23, 336–341.
  • Cao FR, Ding H, Wang ZD, Li YL, Guan RG and Cui JZ: ‘Quasi-superplasticity and deformation mechanism of ultralight β solid solution Mg–11Li-3Zn alloy’, Acta Metall. Sin., 2012, 48, (2), 250–256.
  • Kawasaki M, Kubota K, Higashi K and Langdon TG: ‘Flow and cavitation in a quasi-superplastic two-phase magnesium–lithium alloy’, Mater. Sci. Eng. A, 2006, 429, 334–340.
  • Kaibyshev OA and Sakikhov RR: ‘Effect of superplastic deformation on the structure and properties of alloy MA21’, Met. Sci. Heat Treat., 1981, 23, (3), 188–192.
  • Kaibyshev OA, Salikhov PP and Zaripov NG: ‘Mechanical properties of IMV-2 alloy after superplastic deformation’, Tsvetn Met, 1980, (4), 78–82.
  • Wataru F, Norio F, Shigenori H and Kanji K: ‘Microstructural change during superplastic deformation of the Mg-8 mass%Li alloy’, J. Jpn. Inst. Light Met., 1992, 42, (3), 125–131.
  • Cao FR, Cui JZ, Wen JL and Lei F: ‘Mechanical behaviour and microstructure evolution of superplastic Mg-8·4 wt pct Li alloy and effect of grain size and phase ratio on its elongation’, J. Mater. Sci. Technol., 2000, 16, (1), 55–58.
  • Cao FR and Cui JZ: ‘The superplasticity and deformation mechanism of ultralight binary Mg-8wt%Li alloy’, Acta Metall. Sin., 1997, 10, (6), 527–530.
  • Furui M, Xu C, Aida T, Inoue M, Anada H and Langdon TG: ‘Improving the superplastic properties of a two-phase Mg–8%Li alloy through processing by ECAP’, Mater. Sci. Eng. A, 2005, 41, (0–411), 439–442.
  • Furui M, Kitada S, Anada H and Langdon TG: ‘Microstructural evolution of a Mg-8 mass%Li alloy processed by ECAP during superplastic deformation’, J. Jpn. Inst. Met., 2006, 70, (9), 775–779.
  • Furui M, Xu C, Aida T, Inoue M, Anada H and Langdon TG: ‘Superplasticity in a Mg-8 mass%Li two-phase alloy processed by an ECAP method’, J. Jpn. Inst. Met., 2006, 70, (9), 729–734.
  • Wataru F, Kenichi H, Norio F and Yukichi U: ‘Effect of Zr addition on superplastic deformation of the Mg–8%Li eutectic alloy’, J. Jpn. Inst. Light Met., 1995, 45, (6), 333–338.
  • Qu ZK, Liu XH, Wu RZ and Zhang ML: ‘The superplastic property of the as-extruded Mg–8Li alloy’, Mater. Sci. Eng. A, 2010, 527, 3284–3287.
  • Yoshida Y, Cisar L, Kamado S and Kojima Y: ‘Low temperature superplasticity of ECAE processed Mg–10% Li–1% Zn alloy’, Mater. Trans., 2002, 43, (10), 2419–2423.
  • Yoshida Y, Yamada H, Kamado S and Kojima Y: ‘Tensile properties and occurrence of low temperature superplasticity of ECAE processed Mg–Li–Zn alloys’, J. Jpn. Inst. Light Met., 2001, 51, (10), 551–555.
  • Liu XH, Wu RZ, Niu ZY, Zhang JH and Zhang ML: ‘Superplasticity at elevated temperature of an Mg–8%Li–2%Zn alloy’, J. Alloys Compd., 2012, 541, 372–375.
  • Liu XH, Du GJ, Wu RZ, Niu ZY and Zhang ML: ‘Deformation and microstructure evolution of a high strain rate superplastic Mg–Li–Zn alloy’, J. Alloys Compd., 2011, 509, 9558–9561.
  • Liu XH, Zhan HB, Gu SH, Qu ZK, Wu RZ and Zhang ML: ‘Superplasticity in a two-phase Mg–8Li–2Zn alloy processed by two-pass extrusion’, Mater. Sci. Eng., A, 2011, 528, 6157–6162.
  • Liu Q: ‘Research progress on plastic deformation mechanism of Mg alloys’, Acta Metall. Sin., 2010, 46, (11), 1458–1472.
  • Agnew SR, Yoo MH and Tome CN: ‘Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y’, Acta Mater., 2001, 49, 4277–4289.
  • Betsofen SY, Volkov EF and Shaforosto AA: ‘Effect of alloying elements on the formation of rolling texture in Mg–Nd–Zr and Mg–Li alloys’, Russ. Metall., 2011, 2011, (1), 66–71.
  • Al-Samman T: ‘Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy’, Acta Mater., 2009, 57, 2229–2242.
  • Liu T, Wang YD, Wu SD, Peng RL, Huang CX, Jiang CB and Li SX: ‘Textures and mechanical behavior of Mg–3·3%Li alloy after ECAP’, Scripta Mater., 2004, 51, 1057–1061.
  • Kumar V, Govind, Shekhar R and Balani K: ‘Effect of hot rolling on microstructure and texture evolution of Mg-Li based alloy’, Mater. Sci. Forum, 2011, 690, 347–350.
  • Cui CL, Zhu TL, Leng Z, Wu RZ, Zhang JH and Zhang ML: ‘Effects of combined addition of Y and Nd on microstructure and texture after compression of Mg–Li alloy at room temperature’, Acta Metall. Sin., 2012, 48, (6), 725–732.
  • Mason JF, Warwick CM, Smith PJ, Charles JA and Clyne TW: ‘Magnesium–lithium alloys in metal matrix composites – a preliminary report’, J. Mater. Sci., 1989, 24, 3934–3946.
  • Westbrook JH and Fleischer RL: ‘Basic mechanical properties and lattice defects of intermetallic compounds’; 2000, England, John Wiley and Sons Ltd.
  • Wang SJ, Wu GQ, Li RH, Luo GX and Huang Z: ‘Microstructures and mechanical properties of 5 wt.% Al2Yp/Mg–Li composite’, Mater. Lett., 2006, 60, 1863–1865.
  • Luo GX, Wu GQ, Wang SJ, Li RH and Huang Z: ‘Effects of YAl2 particulates on microstructure and mechanical properties of b-Mg–Li alloy’, J. Mater. Sci., 2006, 41, 5556–5558.
  • Trojanova Z, Droz Z, Kudel S, Szaraz Z and Lukac P: ‘Strengthening in Mg–Li matrix composites’, Compos. Sci. Technol., 2007, 67, 1965–1973.
  • Trojanova Z, Kudela S, Lukac P, Drozd Z, Mathis K and Kolenciak V: ‘Mechanical properties of Mg–Li–Al alloys reinforced by short Saffil fibres’, Kovove Mater., 2001, 39, (1), 1–10.
  • Kudela S, Rennenkamp R, Baunack S, Gergely V, Oswald S and Wetzing K: ‘TEM study of the fibre cross-section attack in δ-Al2O3/Mg8Li metal matrix composites’, Microchim. Acta, 1997, 27, 243–252.
  • Kudela S, Gergely V, Smrcok L, Oswald S, Baunack S and Wetzig K: ‘Phase transformations of δAl2O3(Saffil) fibres during their interaction with molten MgLi alloys’, J. Mater. Sci., 1996, 31, (6), 1595–1602.
  • Kudela S Jr, Rudajevova A and Kudela S: ‘Anisotropy of thermal expansion in Mg- and Mg4Li-matrix composites reinforced by short alumina fibers’, Mater. Sci. Eng., A, 2007, 462, 239–342.
  • Ma CJ, Zhang D, Ding WJ and Wang QD: ‘Damping capacity of SiCw/MgLiAl composites’, J. Mater. Sci. Lett., 2001, 20, 327–329.
  • Zhang D, Ma CJ, Qin J, Wu RJ, Sakata T and Mori H: ‘Interfacial structure and mechanical properties of MgLi matrix composites’, Compos. Interfaces, 2001, 8, (5), 383–391.
  • Whalen RT, Gonzalez-Doncel G, Robinson SL and Sherby OD: ‘Mechanical properties of particulate composites based on a body-centered-cubic MgLi alloy containing boron’, Scripta Metall. Mater., 1989, 23, (1), 137–140.
  • Wolfenstine J, Gonzalez-Doncel G and Sherby OD: ‘Elevated temperature properties of Mg–14Li–B particulate composites’, J. Mater. Res., 1990, 5, (7), 1359–1362.
  • Yu HS, Min GH, Ren XF and Chen XC: ‘Thermodynamics and kinetics of the reaction of B2O3 with Mg–Li alloy for the fabrication of Mg–Li composites’, Acta Mater. Compos. Sinica, 1998, 15, (2), 18–22.
  • Gonzalez-Doncel G, Wolfenstaine J, Metenier P, Ruano OA and Sherby OD: ‘The use of foil metallurgy processing to achieve ultrafine grained Mg–9Li laminates and Mg–9Li–5B4C particulate composites’, J. Mater. Sci., 1990, 25, 4535–4540.
  • Wolfenstine J, Gonzalez-Doncel G and Sherby OD: ‘Tension versus compression superplastic behavior of a Mg–9 wt%Li–5 wt% B4C composite’, Mater. Lett., 1992, 15, 305–308.
  • Ren GA, Liu ZJ, Yang XL, Huang HF and Wen YC: ‘Effect of alkaline solution treatment of B4C powder on the dispersion in the Mg–Li matrix’, Acta Mater. Compos. Sinica, 2011, 28, (6), 148–152.
  • Wu LB, Meng XR, Wu RZ, Cui CL, Zhang ML and Zhang JH: ‘Solid-state composite technology for B4Cp reinforced magnesium–lithium alloy’, Trans. Nonferrous Met. Soc. China, 2011, 21, 820–824.
  • Jensen JA and Chumbley LS: ‘Processing and mechanical properties of magnesium–lithium composites containing steel fibers’, Metall. Mater. Trans. A, 1998, 29, 863–873.
  • Jensen JA, Laabs FC and Chumbley LS: ‘Microstructure of heavily deformed magnesium–lithium composites containing steel fibers’, J. Mater. Eng. Perform, 1998, 7, (3), 375–384.
  • Matsumoto H, Watanabe S and Hanada S: ‘Fabrication of pure Al/Mg–Li alloy clad plate and its mechanical properties’, J. Mater. Process Technol., 2005, 169, 9–15.
  • Matsumoto H, Watanabe S and Hanada S: ‘Sheet cladding of Al–Mg/Mg–Li/Al–Mg at room temperature’, Mater. Forum, 2005, 29, 446–451.
  • Zu GY, Li HB and Yao GC: ‘Research on preparation process of super light Mg–9Li–1Zn alloy/Al cladding plate’, Magnesium Technol., 2007, 2007, 209–215.
  • Smolinski J: ‘Electrolytic deposition and diffusion of lithium into magnesium’, J. Appl. Chem., 1956, 6, 180–186.
  • Smolinski J, Hannam J and Leach AL: ‘An electrolytic method for the direct production of magnesium lithium alloys from lithium chloride’, J. Appl. Chem., 1956, 6, 187–196.
  • Lin MC, Tsai CY and Uan JY: ‘Converting hcp Mg–Al–Zn alloy into bcc Mg–Li–Al–Zn alloy by electrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyte LiCl–KCl’, Scripta Mater., 2007, 56, 597–600.
  • Zhang ML, Yan YD, Hou ZY, Fan LA, Chen Z and Tang DX: ‘Preparation of Mg–Li alloys by electrolysis in molten salt at low temperature’, Chin. Chem. Lett., 2007, 18, 329–332.
  • Zhang ML, Yan YD, Hou ZY, Fan LA, Chen Z and Tang DX: ‘An electrochemical method for the preparation of Mg–Li alloys at low temperature molten salt system’, J. Alloys Compd., 2007, 440, 362–366.
  • Yan YD, Zhang ML, Han W, Cao DX, Yuan Y and Xue Y: ‘Electrochemical formation of Mg–Li alloys at solid magnesium electrode from LiCl–KCl melts’, Electrochim. Acta, 2008, 53, 3323–3328.
  • Iida T, Nohira T and Ito Y: ‘Electrochemical formation of Sm–Co alloys by codeposition of Sm and Co in a molten LiCl–KCl–SmCl3–CoCl2 system’, Electrochim. Acta, 2003, 48, 2517–2521.
  • Iida T, Nohira T and Ito Y: ‘Electrochemical formation of Yb–Ni alloy films by Li codeposition method in a molten LiCl–KCl–YbCl3 system’, Electrochim. Acta, 2003, 48, 1531–1536.
  • Freyland W, Zell CA, Abedin SZE and Endres F: ‘Nanoscale electrodeposition of metals and semiconductors from ionic liquids’, Electrochim. Acta, 2003, 48, 3053–3061.
  • Zell CA and Freyland W: ‘In situ STM and STS study of NixAl1−x alloy formation on Au(1 1 1) by electrodeposition from a molten salt electrolyte’, Chem. Phys. Lett., 2001, 337, 293–298.
  • Mann O and Freyland W: ‘Mechanism of formation and electronic structure of semiconducting ZnSb nanoclusters electrodeposited from an ionic liquid’, Electrochim. Acta, 2007, 53, 518–524.
  • Tsuda T, Hussey CL, Stafford GR and Bonevich JE: ‘Electrochemistry of titanium and the electrodeposition of Al–Ti alloys in the lewis acidic aluminum chloride–1-ethyl-3-methylimidazolium chloride melt’, J. Electrochem. Soc., 2003, 150, C234–C243.
  • Tsuda T, Hussey CL and Stafford GR: ‘Electrodeposition of Al–Mo alloys from the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt’, J. Electrochem. Soc., 2004, 151, C379–C384.
  • Yan YD, Zhang ML, Han W, Xue Y, He LY and Chen Z: ‘Preparation and theory analysis of Mg–Li alloys via codeposition in KCl–LiCl–MgCl2 melts’, Chinese J. Inorg. Chem., 2008, 24, 902–906.
  • Yan YD, Zhang ML, Han W, Xue Y, Cao DX and Yuan Y: ‘Electrochemical codeposition of Mg–Li alloys from a molten KCl–LiCl–MgCl2 system’, Chem. Lett., 2008, 37, 212–213.
  • Ye K, Chen Y and Zhang M: ‘Electrochemical codeposition of typical α+β phases Mg–Li alloys from the molten LiCl–KCl–MgCl2 system’, Rare Metals, 2010, 29, 198–203.
  • Drozd Z, Trojanová Z and Kúdela S: ‘Deformation behaviour of Mg–Li–Al alloys’, J. Alloys Compd., 2004, 378, 192–195.
  • Liu N, Wang J, Wu Y and Wang L: ‘Electrochemical corrosion behavior of cast Mg–Al–RE–Mn alloys in NaCl solution’, J. Mater. Sci., 2008, 43, 2550–2554.
  • Sasaki T, Oh-Ishi K, Ohkubo T and Hono K: ‘Enhanced age hardening response by the addition of Zn in Mg–Sn alloys’, Scripta Mater., 2006, 55, 251–254.
  • Wu G, Fan Y, Gao H, Zhai C and Zhu YP: ‘The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D’, Mater. Sci. Eng., A, 2005, 408, 255–263.
  • Liu T, Zhang W, Wu S, Jiang C, Li S and Xu Y: ‘Mechanical properties of a two-phase alloy Mg–8% Li–1% Al processed by equal channel angular pressing’, Mater. Sci. Eng., A, 2003, 360, 345–349.
  • Yan YD, Zhang ML, Xue Y, Han W, Cao DX and He LY: ‘Electrochemical study of the codeposition of Mg–Li–Al alloys from LiCl–KCl–MgCl2–AlCl3 melts’, J. Appl. Electrochem., 2009, 39, 455–461.
  • Ye K, Zhang ML, Chen Y, Han W, Yan YD and Cao P: ‘Electrochemical codeposition of Al–Li–Mg alloys at solid aluminum electrode from LiCl–KCl–MgCl2 molten salt system’, Metall. Mater. Trans. B, 2010, 41, 691–698.
  • Yan YD, Zhang ML, Xue Y, Han W, Cao DX and Wei SQ: ‘Study on the preparation of Mg–Li–Zn alloys by electrochemical codeposition from LiCl–KCl–MgCl2–ZnCl2 melts’, Electrochim. Acta, 2009, 54, 3387–3393.
  • Ninomiya R, Ojiro T and Kubota K: ‘Improved heat resistance of Mg–Al alloys by the Ca addition’, Acta Metall. Mater., 1995, 43, 669–674.
  • Yan YD, Zhang ML, Xue Y, Han W, Cao DX and Jing XY: ‘Electrochemical formation of Mg–Li–Ca alloys by codeposition of Mg, Li and Ca from LiCl–KCl–MgCl2–CaCl2 melts’, Phys. Chem. Chem. Phys., 2009, 11, 6148–6155.
  • Elsentriecy HH, Azumi K and Konno H: ‘Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique’, Electrochim. Acta, 2007, 53, 1006–1012.
  • Mingbo Y, Fusheng P, Renju C and Jia S: ‘Comparison about effects of Sb, Sn and Sr on as-cast microstructure and mechanical properties of AZ61–0·7 Si magnesium alloy’, Mater. Sci. Eng. A, 2008, 489, 413–418.
  • Wei SQ, Zhang ML, Han W, Yan YD, Xue Y and Zhang M: ‘Electrochemical behavior of antimony and electrodeposition of Mg–Li–Sb alloys from chloride melts’, Electrochim. Acta, 2011, 56, 4159–4166.
  • Ye K, Chen Y, Zhang ML, Han W, Yan YD and Wei SQ: ‘Electrochemical formation of Mg–Li–Yb alloys at solid magnesium electrode from LiCl–KCl–YbCl3 melts at low temperature’, Chem. Lett., 2010, 39, 90–91.
  • Chen Y, Ye K and Zhang M: ‘Preparation of Mg–Yb alloy film by electrolysis in the molten LiCl–KCl–YbCl3 system at low temperature’, J. Rare Earth, 2010, 28, 128–133.
  • Wei SQ, Zhang ML, Han W, Yan YD, Zhang M and Zhang B: ‘Electrochemical codeposition of Mg–Li–Gd alloys from LiCl–KCl–MgCl2–Gd2O3 melts’, Trans. Nonferrous Met. Soc. China, 2011, 21, 825–829.
  • Zhang ML, Cao P, Han W, Yan YD and Chen LJ: ‘Preparation of Mg–Li–La alloys by electrolysis in molten salt’, Trans. Nonferrous Met. Soc. China, 2012, 22, 16–22.
  • Chen LJ, Zhang ML, Han W, Yan YD and Cao P: ‘Electrochemical study on preparation of Mg–Li–Yb alloys in LiCl–KCl–KF–MgCl2–Yb2O3 melts’, J. Rare Earth, 2012, 30, 159–163.
  • Zhang ML, Yan YD, Han W, Xue Y, Jing XY and Liu XL: ‘Electrochemical preparation of Mg–Li–Y alloys by codeposition from LiCl–KCl–MgCl2–YCl3 melts’, Electrochemistry, 2009, 77, 699–701.
  • Han W, Tian Y, Zhang M, Ye K, Zhao Q and Wei S: ‘Preparing different phases of Mg–Li–Sm alloys by molten salt electrolysis in LiCl–KCl–MgCl2–SmCl3 melts’, J. Rare Earth, 2010, 28, 227–231.
  • Han W, Wang FL, Tian Y, Zhang ML and Yan YD: ‘Electrochemical formation of Mg–Li–Sm alloys by codeposition from LiCl–KCl–MgCl2–SmCl3 molten salts’, Metall. Mater. Trans. B, 2011, 42, 1376–1382.
  • Cao P, Zhang ML, Han W, Yan YD, Wei SQ and Zheng T: ‘Electrochemical behaviour of erbium and preparation of Mg–Li–Er alloys by codeposition’, J. Rare Earth, 2011, 29, 763–767.
  • Han W, Zhang YX, Ye K, Yan YD and Zhang ML: ‘Electrochemical codeposition of quaternary Mg–Li–Ce–La alloys from molten salt’, Metall. Mater. Trans. B, 2010, 41, 1123–1128.
  • Yan YD, Xue Y, Zhang ML, Han W, Zhang M and Tang H: ‘Direct electrodeposition of quarternary Mg–Li–Al–Zn alloys from their chloride melts’, J. Electrochem. Soc., 2011, 158, D317–D322.
  • Cao P, Zhang ML, Han W, Yan YD and Chen LJ: ‘Electrochemical preparation of Mg–Li–Zn–Mn alloys by codeposition’, Metall. Mater. Trans. B, 2011, 42, 914–920.
  • Han W, Chen Q, Sun Y, Jiang T and Zhang M: ‘Electrodeposition of Mg–Li–Al–La alloys on inert cathode in molten LiCl–KCl eutectic salt’, Metall. Mater. Trans. B, 2011, 42, 1367–1375.
  • Song YW, Shan DY, Chen RS and Han EH: ‘Investigation of surface oxide film on magnesium lithium alloy’, J. Alloys Compd., 2009, 484, 585–590.
  • G. L. Song: Corrosion prevention of magnesium alloys. Woodhead Publishing, 2013.
  • Jin HL, Yang XJ and Wang M: ‘Chemical conversion coating on AZ31B magnesium alloy and its corrosion tendency’, Acta Metall. Sin., 2009, 22, 65–70.
  • Salman SA, Mori R, Ichino R and Okido M: ‘Effect of anodizing potential on the surface morphology and corrosion property of AZ31 magnesium alloy’, Mater. Trans., 2009, 51, 1109–1113.
  • Yu SX, Cao JY, Chen L, Han J and Zhan RJ: ‘Corrosion resistance, composition and structure of RE chemical conversion coating on magnesium alloy’, Trans. Nonferrous Met. Soc. China, 2008, 18, 349–363.
  • Wolfe RC, Shaw BA and Sikora E: ‘The effect of thermal treatment on the corrosion properties of vapor deposited magnesium alloyed with yttrium, aluminum, titanium, and misch metal’, J. Alloys Compd., 2007, 437, 157–164.
  • Chen XM, Li GY, Lian JS and Qiang Q: ‘An organic chromium-free conversion coating on AZ91D magnesium alloy’, Appl. Surf Sci., 2008, 255, 2322–2328.
  • Hsiao HY and Tsai WT: ‘Characterization of anodic films formed on AZ91D magnesium alloy’, Surf. Coat. Technol., 2005, 190, 299–308.
  • Zhu XM, Yang HG and Lei MK: ‘Corrosion resistance of Al ion implanted AZ31 magnesium alloy at elevated temperature’, Surf. Coat. Technol., 2007, 201, 6663–6666.
  • Shi HY, Yang W and Jiang BL: ‘Composite technology and coatings obtained by micro-arc oxidation and electrophoresis of AZ31 Mg-based alloy’, J. Chinese Soc. Corros. Protect., 2008, 28, 155–160.
  • Sathiyanarayanan S, Azim SS and Venkatachari G: ‘Corrosion resistant properties of polyaniline–acrylic coating on magnesium alloy’, Appl. Surf. Sci., 2006, 253, 2113–2117.
  • Luo HJ, Song BN, Liu YH and Yao GC: ‘Electroless Ni-P plating on Mg–Li alloy by two-step method’, Trans. Nonferrous Met. Soc. China, 2011, 21, 2225–2230.
  • Lowenheim FA: ‘Modern electroplating’; 1974, New York, Wiley.
  • Jin HL, Yang XJ, Wei RJ and Chen X: ‘Effect of chemical conversion film on corrosion resistance of magnesium alloy’, Trans. Nonferrous Met. Soc. China, 2007, 17, 963–967.
  • Zhang HY, Li HL and Guo YN: ‘Study of corrosion resistance of chemical conversion coatings on magnesium alloy substrate’, Mater. Protect., 2007, 40, 10–12.
  • Hagans PL and Haas CM: ‘Chromate conversion coatings’, in ‘ASM handbook, surface engineering’, (ed. F. Reidenbach), Vol. 5, 405; 1994, Ohio, ASM International.
  • Horner J: Met. Finish., 1990, 88, 76.
  • Eppensteiner FW and Jenkins MR: ‘Metal finishing guidebook and directory’, Vol. 90, 413; 1992, New Jercy, Metals and Plastics Publications, Inc.
  • Sharma AK, Suresh MR, Bhojraj H and Sahu RP: ‘Electroless nickel plating on magnesium alloy’, Met. Finish., 1998, 96, (3), 10–16.
  • Mittal CK: ‘Chemical conversion and anodized coatings’, Trans. Metal Finishers Assoc. India, 1995, 4, 227–231.
  • Yang L, Liu HY and Hu N: ‘Assembly of electroactive layer-by-layer films of myoglobin and small-molecular phytic acid’, Electrochem. Commun., 2007, 9, 1057–1061.
  • Cui XF, Li QF, Li Y, Wang FH, Jin G and Ding MH: ‘Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy’, Appl. Surf. Sci., 2008, 255, 2098–2103.
  • Gupta RK, Mensah-Darkwa K and Kumar D: ‘Effect of post heat treatment on corrosion resistance of phytic acid conversion coated magnesium’, J. Mater. Sci. Technol., 2013, 29, 180–186.
  • Gao LL, Zhang CH, Zhang ML, Huang XM and Jiang X: ‘Phytic acid conversion coating on Mg–Li alloy’, J. Alloy. Compd., 2009, 485, 789–793.
  • Sharma AK: ‘Chromate conversion coatings for magnesium–lithium alloys’, Met. Finish., 1989, 87, 73–74.
  • Azkarate I, Cano P, Barrio AD, Insausti M and Coloma PS: ‘Alternatives to Cr(VI) conversion coatings for magnesium alloys’, in ‘International Congress magnesium alloys and their applications’, (ed. K. U. Kainer), 2000, 475-483, Wiley-VCH Verlag GmbH.
  • Zhang H, Yao GC, Wang SL, Liu YH and Luo HJ: ‘A chrome-free conversion coating for magnesium–lithium alloy by a phosphate–permanganate solution’, Surf. Coat. Technol., 2008, 202, 1825–1830.
  • Montemor MF, Simoes AM and Carmezim MJ: ‘Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection’, Appl. Surf. Sci., 2007, 253, 6922–6931.
  • Katya B, Manuele D and Irene C: ‘Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys’, Corros. Sci., 2005, 47, 989–1000.
  • Li LJ, Lei JL, Tian YJ, Zhang ST and Pan FS: ‘Influence of treating temperatures on properties and performances of cerium conversion coatings on magnesium alloys’, J. Mater. Eng., 2008, 2, 14–17.
  • Rudd AL, Breslin CB and Mansfeld F: ‘The corrosion protection afforded by rare earth conversion coatings applied to magnesium’, Corros. Sci., 2000, 42, 275–288.
  • Yang LH, Li JQ and Yu X: ‘Lanthanum-based conversion coating on Mg–8Li alloy’, Appl. Surf. Sci., 2008, 255, 2338–2341.
  • Yang XW, Wang GX, Dong GJ, Gong F and Zhang ML: ‘Rare earth conversion coating on Mg–8·5Li alloys’, J. Alloy. Compd., 2009, 487, 64–68.
  • Wang GX, Zhang ML and Wu RZ: ‘Molybdate and molybdate/permanganate conversion coatings on Mg–8·5Li alloy’, Appl. Surf. Sci., 2012, 258, 2648–2654.
  • Elsentriecy HH, Azumi K and Konno H: ‘Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy’, Surf. Coat. Technol., 2007, 202, 532–537.
  • Zucchi F, Frignani A, Grassi V, Trabanelli G and DalColle M: ‘The formation of a protective layer of 3-mercapto-propyl-trimethoxy-silane on copper’, Corros. Sci., 2007, 49, 1570–1583.
  • Lin CS, Lin HC, Lin KM and Lai WC: ‘Formation and properties of stannate conversion coatings on magnesium alloys’, Corros. Sci., 2006, 48, 93–109.
  • Yang LH, Zhang ML, Li JQ, Yu X and Niu ZY: ‘Stannate conversion coatings on Mg–8Li alloy’, J. Alloy Compd., 2009, 471, 197–200.
  • Sharma AK, Rani UR, Malek A, Acharya KSN, Muddu M and Kumar S: ‘Black anodizing of a magnesium–lithium alloy’, Met. Finish., 1996, 94, 16–22.
  • Brace A: ‘Seventy years of sulphuric acid anodizing’, Transactions, 1997, 75, B101–B106.
  • Li JF, Zheng ZQ and Li SC: ‘Preparation and galvanic anodizing of a Mg–Li alloy’, Mater. Sci. Eng. A, 2006, 433, 233–240.
  • Duan HP, Yan CW and Wang FH: ‘Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution’, Electrochim. Acta, 2007, 52, 5002–5009.
  • Barchiche CE, Rocca E, Juers C, Hazan J and Steinmetz J: ‘Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods’, Electrochim. Acta, 2007, 53, 417–425.
  • Yao ZP, Gao HH, Jiang ZH and Wang FP: ‘Structure and properties of ZrO2 ceramic coatings on AZ91D Mg alloy by plasma electrolytic oxidation’, J. Am. Ceram. Soc., 2008, 91, 555–558.
  • Guo HF, An MZ, Xu S and Huo HB: ‘Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy’, Mater. Lett., 2006, 60, 1538–1541.
  • Cai QZ, Wang LS, Wei BK and Liu QX: ‘Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes’, Surf. Coat Technol., 2006, 200, 3727–3733.
  • Chen F, Zhou H, Yao B, Qin Z and Zhang QF: ‘Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces’, Surf. Coat Technol., 2007, 201, 4905–4908.
  • Guo HF and An MZ: ‘Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation’, Thin Solid Films, 2006, 500, 186–189.
  • Abbasian A, Ghaffarian SR, Mohammadi N, Khosroshahi MR and Fathollahi M: ‘Study on different planforms of paint's solvents and the effect of surfactants(on them)’, Prog. Org. Coat., 2004, 49, 229–235.
  • Shi LL, Xu YJ, Li K, Yao ZP and Wu SQ: ‘Effect of additives on structure and corrosion resistance of ceramic coatings on Mg–Li alloy by micro-arc oxidation’, Curr. Appl. Phys., 2010, 10, 719–723.
  • Zhang CH, Huang XM, Zhang ML, Gao LL and Wu RZ: ‘Electrochemical characterization of the corrosion of a Mg–Li alloy’, Mater. Lett., 2008, 62, 2177–2180.
  • Song YW, Shan DY, Chen RS and Han EH: ‘Corrosion characterization of Mg–8Li alloy in NaCl solution’, Corros. Sci., 2009, 51, 1087–1094.
  • Song YW, Shan DY, Chen RS, Zhang F and Han EH: Surf. Coat. Technol., 2009, 203, 1107–1113.
  • Brunelli K, Dabala M, Calliari I and Magrini M: ‘Effect of HCl pre-treatment on corrosion resistance of cerium based conversion coating on magnesium and magnesium alloys’, Corros. Sci., 2005, 47, 989–1000.
  • Moore KL, Sykes JM, Hogg SC and Grant PS: ‘Pitting corrosion of spray formed Al–Li–Mg alloys’, Corros. Sci., 2008, 50, 3221–3226.
  • Lin MC, Tsai CY and Uan JY: ‘Electrochemical behaviour and corrosion performance of Mg–Li–Al–Zn anodes with high Al composition’, Corros. Sci., 2009, 51, 2463–2472.
  • Zhang RF, Shan DY, Chen RS and Han EH: ‘Effects of electric parameters on properties of anodic coatings formed on magnesium alloys’, Mater Chem. Phys., 2008, 107, 356–363.
  • Song YW, Shan DY and Han EH: ‘High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys’, Electrochim. Acta, 2008, 53, 2135–2143.
  • Prosek T, Nazarov A, Bexell U, Thierry D and Serak J: ‘Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions’, Corros. Sci., 2008, 50, 2216–2231.
  • Kim J, Wong KC, Wong PC, Kulinich SA, Metson JB and Mitchell KAR: ‘Characterization of AZ91 magnesium alloy and organosilane adsorption on its surface’, Appl. Surf. Sci., 2007, 253, 4197–4207.
  • Shao YW, Huang H, Zhang T, Meng GZ and Wang FH: ‘Corrosion protection of Mg–5Li alloy with epoxy coatings containing polyaniline’, Corros. Sci., 2009, 51, 2906–2915.
  • Yang LH, Li JQ, Yu X, Zhang ML and Huang XM: ‘Lanthanum-based conversion coating on Mg–8Li alloy’, Appl. Surf. Sci., 2008, 255, 2338–2341.
  • Huang LM, Wang ZB, Sun JY, Miao L, Li Q, Yan Y and Zhao D: ‘Fabrication of ordered porous structures by solvent-assisted self-assembly of zeolite nanocrystals’, J. Am Chem. Soc., 2000, 122, 3530–3531.
  • Wang HT, Wang ZB, Huang LM and Yan Y: ‘Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles’, Langmuir, 2001, 17, 2572–2574.
  • Shan W, Zhang YH, Yang WL, Ke C, Gao Z, Ye YF and Tang Y: ‘Electrophoretic deposition of nanosized zeolites in non-aqueous medium and its application in fabricating thin zeolite membranes’, Microporous Mesoporous Mater., 2004, 69, 35–42.
  • Wang ZB, Wang HT and Yan Y: ‘Pure silica zeolite low k thin films’, Adv. Mater., 2001, 13, 746–749.
  • Cheng Y, Li JS, Wang LJ, Sun XY and Liu XD: ‘Research progress of ZSM-5 zeolite membranes’, Prog. Chem., 2006, 18, 221–229.
  • Cheng XL, Wang ZB and Yan YS: ‘Corrosion-resistant zeolite coatings by in situ crystallization’, Electrochem. Solid-State Lett., 2001, 4, B23–B26.
  • Song DL, Jing XY, Wang J, Wang YL, Yang PP and Zhao M: ‘Corrosion-resistant ZSM-5 zeolite coatings formed on Mg–Li alloy by hot-pressing’, Corros. Sci., 2011, 53, 1732–1737.
  • Yamauchi N, Demizu K, Ueda N, Cuong NK, Sone T and Hirose Y: ‘Friction and wear of DLC films on magnesium alloy’, Surf. Coat Techol., 2005, 193, 277–282.
  • Yamauchi N, Demizu K, Ueda N, Sone T, Tsujikawa M and Hirose Y: ‘Effect of peening as pretreatment for DLC coatings on magnesium alloy’, Thin Solid Films, 2006, 50, (6–507), 378–383.
  • Yamauchi N, Ueda N, Okamoto A, Sone T, Tsujikawa M and Oki S: ‘DLC coating on Mg–Li alloy’, Surf. Coat Technol., 2007, 201, 4913–4918.
  • Wu LP and Yang ZD: ‘EIS study of molybdate conversion coatings formed on AZ91D magnesium alloy’, Adv. Mater. Res., 2011, 18, (9–193), 279–285.
  • Kato T and Ohana K: 1999. Magnesium alloy components and application, CN, 1234 455A, 9810 4158·5.
  • Al-Borno A, Islam M and Khraishi R: ‘Multi-component corrosion-inhibitor system for recirculating cooling water system based on nitrite, molybdate and inorganic-phosphate’, Corrosion., 1989, 45, 970–975.
  • Al-Borno A, Islam M and Haleem R: ‘Synergistic effects observed in nitrite-inorganic phosphate inhibitor blends’, Corros. Sci, 1989, 45, 990–995.
  • Veleva L, Chin J and Del AB: ‘Corrosion electrochemical behavior of epoxy anticorrosive paints based on zinc molybdenum phosphate and zinc oxide’, Prog. Org. Coat, 1999, 36, 211–216.
  • Yu X, Wang J, Zhang ML, Yang LH, Li JQ and Yang PP: ‘Synthesis, characterization and anticorrosion performance of molybdate pillared hydrotalcite/in situ created ZnO composite as pigment for Mg–Li alloy protection’, Surf. Coat Technol., 2008, 203, 250–255.
  • Wei YH, Zhang LX and Ke W: ‘Evaluation of corrosion protection of carbon black filled fusion-bonded epoxy coatings on mild steel during exposure to a quiescent 3% NaCl solution’, Corros. Sci., 2007, 49, 287–302.
  • Zhang JH, Zhang L, Leng Z, Liu SJ, Wu RZ and Zhang ML: ‘Experimental study on strengthening of Mg–Li alloy by introducing long-period stacking ordered structure’, Scr. Mater., 2013, 68, 675–678.
  • Hermawan H, Dub D and Mantovani D: ‘Developments in metallic biodegradable stents’, Acta Biomater., 2010, 6, 1693–1697.
  • Leeflang MA, Dzwonczyk JS, Zhou J and Duszczyk J: ‘Long-term biodegradation and associated hydrogen evolution of duplex-structured Mg–Li–Al–(RE) alloys and their mechanical properties’, Mater. Sci. Eng., B, 2011, 176, 1741–1745.
  • Zhou WR, Zheng YF, Leeflang MA and Zhou J: ‘Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application’, Acta Biomater., 2013, 9, 8488–8498.
  • Sivashanmugam A, Kumar TP, Renganathan NG and Gopukumar S: ‘Performance of a magnesium–lithium alloy as an anode for magnesium batteries’, J. Appl. Electrochem., 2004, 34, 1135–1139.
  • Lv YZ, Xu Y and Cao DX: ‘The electrochemical behaviors of Mg, Mg–Li–Al–Ce and Mg–Li–Al–Ce–Y in sodium chloride solution’, J. Power Sources, 2011, 196, 8809–8814.
  • Lv YZ, Liu M, Xu Y, Cao DX, Feng J, Wu RZ and Zhang ML: ‘The electrochemical behaviors of Mg–8Li–0·5Y and Mg–8Li–1Y alloys in sodium’, J. Power Sources, 2013, 239, 265–268.
  • Liu GB, Gao P, Xue Z, Tong ZQ and Zhang ML: ‘Ultra-high strength Mg–Li based bulk metallic glasses: preparation and performance research’, Mater. Sci. Eng., 2011, 528, 7156–7160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.