1,643
Views
83
CrossRef citations to date
0
Altmetric
Full Critical Reviews

The reactive element effect on high-temperature oxidation of magnesium

Pages 264-296 | Received 06 May 2014, Accepted 13 Jan 2015, Published online: 27 Jan 2015

Bibliography

  • Pfeil L: ‘Improvement of heat-resisting alloys’, Patent, UK 459848, 1937.
  • Stringer J: ‘The reactive element effect in high-temperature oxidation’, Mater. Sci. Eng. A, 1989, 120–121, (1), 120–137.
  • Abbas M: ‘Effect of rare earth oxides (Y2O3, Nd2O3) on oxidation kinetics of Al-Li alloys’, Nahrain Univ. Coll. Eng. J., 2007, 10, (1), 37–52.
  • Czerwinski F and Smeltzer W: ‘The growth and structure of thin oxide films on ceria-sol-coated nickel’, Oxid. Met., 1993, 40, (5–6), 503–527.
  • Luo A: ‘Magnesium casting technology for structural applications’, J. Magnes. Alloys, 2013, 1, (1), 2–22.
  • Friedrich H and Mordike B: ‘Magnesium technology – metallurgy, design, data, applications’; 2006, Berlin, Springer.
  • Czerwinski F: ‘Magnesium injection molding’; 2008, New York, Springer Verlag.
  • Avedesian M and Baker H(eds.): ‘Magnesium and magnesium alloys’; 1999, Materials Park: ASM International Materials Part, Ohio, USA.
  • Czerwinski F, Zielinska-Lipiec A, Pinet P and Overbeeke J: ‘Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy’, Acta Mater., 2001, 49, (7), 1225–1235.
  • Quan Y, Chen Z, Gong X and Yu Z: ‘Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31’, Mater. Charact., 2008, 59, 1491–1497.
  • Czerwinski F: ‘Near-liquidus injection molding process’, US Patent, 7,255,151, 2007.
  • Czerwinski F: ‘Metal molding system and process for making foamed alloys’, US Patent, 7,699,092, 2010.
  • Marker T: ‘FAA overview on testing of magnesium alloys for use in an aircraft cabin’, in FAA 6th triennial Cabin and Fire Safety Conference, Atlantic City, 2010.
  • ‘Federal Aviation Administration, Materials Flammability Working Group Report, ARAC – TAEIG,’ 2012, Available at: www.faa.gov/media/TAE.Materials.Flammability.RR.2012·08·10, 9 July 2012.
  • Czerwinski F: ‘Controlling the ignition and flammability of magnesium for aerospace applications’, Corros. Sci., 2015, 86, 1–16.
  • Czerwinski F: ‘Overcoming barriers of magnesium ignition and flammability’, Adv. Mater. Process., 2014, 172, (5), 28–31.
  • Roure S, Czerwinski F and Petric A: ‘Influence of CeO2 coating on the high temperature oxidation of chromium’, Oxid. Met., 1994, 42, 75–102.
  • Elbisch H, Lohmuller A, Koempel N and Singer R: ‘Effect of solidification microstructure and Ca additions on creep strength of magnesium alloy AZ91D processed by thixomolding’, Int. J. Mater. Res., 2008, 1, 56–66.
  • Nami B, Shabestari S, Razavi H, Mirdamadi S and Miresmaaeli S: ‘Effect of Ca, RE elements and semisolid processing on the microstructure and creep properties of AZ91 alloy’, Mater. Sci. Eng. A, 2011, 528, 1261–1267.
  • Nie J and Gao XZS: ‘Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn’, Scr. Mater., 2005, 53, 1049–1053.
  • Tang B, Li S, Wang X, Zeng D and Wu R: ‘Effect of Ca/Sr composite addition into AZ91D alloy on hot-cracking mechanism’, Scr. Mater., 2005, 53, 1077–1082.
  • Chermyshev A, Petrov V, Titov N and Vorobyev A: ‘Thermal radiative properties of magnesium oxide at high temperatures’, Thermochim. Acta, 1993, 218, 195–209.
  • Arai H and Machida M: ‘Recent progress in high-temperature catalysis combustion’, Catal. Today, 1991, 10, 81–94.
  • Berg M and Jaras S: ‘High temperature stable magnesium oxide catalyst for catalytic combustion of methane: a comparison with manganese-substituted barium hexaaluminate’, Catal. Today, 1995, 26, 223–229.
  • Wilson I: ‘Magnesium oxide as a high-temperature insulant’, IEE Proc., 1981, 128A, (3), 159–164.
  • Ambika I and Barman P: ‘Magnesium oxide films as temperature sensor’, Asian J. Chem., 2009, 21, (10), S076–S080.
  • Yang P and Lieber C: ‘Nanorod-superconductor composites: a pathway to high critical current density materials’, Science, 1996, 273, 1836–1840.
  • Zhang Z, Zhang C, Huang D, Jiang D, Zhang R and Yun Z: ‘Exploring research of the determination method of magnesium oxide hydration’, Adv. Mater. Res., 2011, 177, 342–345.
  • Leu A, Ma S and Eyring H: ‘Properties of molten magnesium oxide’, Proc. Natl. Acad. Sci. U.S.A., 1975, 72, (3), 1026–1030.
  • Van Hong N, Lan M and Hung P: ‘Structure and dynamics of liquid MgO under high pressure’, High Press. Res., 2012, 32, (4), 509–523.
  • Ignatova T, Uzberg L, Shchetnikova I, Rutman D, Kelareva E, Mayauskas I and Yanulis V: ‘Vaporization of magnesium oxide in an oxidizing atmosphere’, Refractories, 1969, 10, (7–8), 515–517.
  • Yang Q, Sha J, Wang L, Wang J and Yang D: ‘MgO nanostructures synthesized by thermal evaporation C’, Mater. Sci. Eng., 2006, 26, 1097–1101.
  • Lide D: ‘Handbook of chemistry and physics’; 1996, New York, CRC Press.
  • Cabailh G, Lazzari R, Cruguel H, Jupille J, Savio L, Smerieri M, Orzelli A, Vattuone L and Rocca M: ‘Stoichiometry-dependent chemical activity of supported MgO(100) films’, J. Phys. Chem. A, 2011, 115, 7161–7168.
  • Kurth M, Graat P, Carstanjen H and Mittemeijer E: ‘The initial oxidation of magnesium: an in situ study with XPS, HERDA and elipsometry’, Surf. Interface Anal., 2006, 38, 931–940.
  • Kofstad P: ‘High temperature corrosion’; 1988, Essex: Elsevier, Essex, UK.
  • Kroger F: ‘The chemistry of imperfect crystals’; 1964, Amsterdam, North-Holland Publishing Co.
  • Zayan M: ‘Model of non-protective oxidation of Al-Mg alloys’, Oxid. Met., 1990, 34, 465.
  • Czerwinski F and Kedzierski Z: ‘On the mechanism of crack formation in nanocrystalline Fe-Ni electrodeposits’, J. Mater. Sci., 1997, 32, 2957–2961.
  • Harris J: ‘Vacancy injection during oxidation: re-examination of evidence’, Acta Metall., 1978, 26, 1033–1044.
  • Pieraggi B and Rapp R: ‘Stress generation and vacancy anihilation during scale growth limited by cation-vacancy diffusion’, Acta Metall., 1988, 36, 1281–1289.
  • Strawbridge A and Rapp R: ‘The role of reactive elements on scale growth in high-temperature oxidation of pure nickel, iron, cobalt and copper, I: oxidation kinetics and scale morphology’, J. Electrochem. Soc., 1994, 141, 1905–1915.
  • Smeltzer W: ‘The influence of short-circuit grain boundary diffusion on the growth of oxide layers on metals’, Mater. Sci. Forum, 1988, 29, 151–172.
  • Lea C and Molinary C: ‘Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys’, J. Mater. Sci., 1984, 19, 2336–2352.
  • Smeltzer W: ‘Oxidation of an aluminum 3 per cent magnesium alloy in the temperature range 200–550 °C’, J. Electrochem. Soc., 1958, 105, 67–71.
  • Perrow J, Smeltzer W and Embury J: ‘The role of structural defects in the growth of nickel oxide’, Acta Metall., 1968, 16, (10), 1209–1218.
  • Rapp R: ‘The high temperature oxidation of metals forming cation-diffusing scales’, Metall. Trans. A, 1984, 15, 765–782.
  • Gupta T: ‘Sintering of MgO: densification and grain growth’, J. Mater. Sci., 1971, 6, 25–32.
  • Runevall O and Sandberg N: ‘Self-diffusion in MgO – a density functional study’, J. Phys. Condens. Matter, 2011, 23, (34), 345402.
  • Martinelli J, Sonder E, Weeks R and Zuhr R: ‘Measurement of cation diffusion in magnesium oxide by determining the Mg18O buildup produced by an electric field’, Phys. Rev. B, 1985, 32, 6756–6763.
  • Dolhert L: ‘Oxygen diffusion in dislocations and grain boundaries in magnesium oxide’, PhD thesis, Massachusetts Institute of Technology, 1985.
  • Splinter S, McIntyre N, Lennard W, Griffith K and Palumbo G: ‘An AES and XPS study of the initial oxidation of polycrystalline magnesium with water vapour at room temperature’, Surf. Sci., 1993, 292, 130–144.
  • Fanjoux G, Billault H, Lescop B and Le Nadan A: ‘Evolution of the magnesium surface during oxidation studied by metastable impact electron spectroscopy’, J. Electron Spectrosc. Relat. Phenom., 2001, 119, 57–67.
  • Jeurgens LPH, Vinodh M and Mittemeijer E: ‘Initial oxide-film growth on Mg-based Mg-Al alloys at room temperature’, Acta Mater., 2008, 56, (17), 4621–4634.
  • Gulbransen E: ‘The oxidation and evaporation of magnesium at temperatures from 400 to 500 °C’, Trans. Electrochem. Soc., 1945, 87, 589–599.
  • Leontis T and Rhines F: ‘Rates of high-temperature oxidation of magnesium and magnesium alloys’, Trans. Am. Inst. Min., Metall. Eng., 1946, 166, 265–294.
  • Czerwinski F: ‘The oxidation behavior of an AZ91D magnesium alloy at high temperatures’, Acta Mater., 2002, 50, 2639–2654.
  • Czerwinski F: ‘The early stage oxidation and evaporation of magnesium alloys’, Corros. Sci., 2004, 46, (2), 377–386.
  • Czerwinski F and Smeltzer W: ‘The early-stage oxidation kinetics of CeO2 sol-coated nickel’, J. Electrochem. Soc., 1993, 140, 2606–2616.
  • Fournier V, Marcus P and Olefjord I: ‘Oxidation of magnesium’, Surf. Interface Anal., 2002, 34, (1), 494–497.
  • Song Y, Shan D, Chen R and Han E: ‘Investigation of surface oxide film on magnesium lithium alloy’, J. Alloys Compd., 2009, 484, 585–590.
  • Roberts C: ‘Magnesium and its alloys’; 1960, John Wiley & Sons, New York, USA.
  • Feliu S, Maffiotte C, Samaniego A, Galvan J and Barranco V: ‘Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys’, Appl. Surf. Sci., 2011, 257, 8558–8568.
  • Barrena M, Gomez de Salazar J, Matesanz L and Soria A: ‘Effect of heat treatment on oxidation kinetics in AZ91 and AM60 magnesium alloys’, Mater. Char., 2011, 62, 982–986.
  • Hine R and Guminski R: J. Inst. Met., 1960, 89, 417–442.
  • Aghion E and Bronfin B: in Proceedings of the 3rd International Magnesium Conference, p 31–34, London, 1997.
  • Lu S, Zhou X, Chen J and Hou Z: ‘Corrosion and high-temperature oxidation of AM60 magnesium alloy’, Trans. Nonferrous Met. Soc. China, 2007, 17, 156–160.
  • Nguyen Q, Gupta M and Srivatsan T: ‘On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B’, Mater. Sci. Eng. A, 2009, 500, 233–237.
  • Nguyen T and Lee D: ‘Oxidation of AM60B Mg alloys containing dispersed SiC particles in air at temperatures between 400 and 550 °C’, Oxid. Met., 2010, 73, 183–192.
  • Lee D, Nguyen T and Kim Y: ‘Oxidation of ZC Mg alloy reinforced with SiC particles between 390 °C and 500 °C in air’, Met. Mater. Int., 2010, 16, (5), 761–766.
  • Popple L: ‘The oxidation of magnesium alloys in reactor atmospheres’, J. Nucl. Mater., 1963, 8, (1), 60–76.
  • Shmitzu K, Brown G, Kobayashi K, Skeldon P, Thompson G and Wood G: ‘The early stages of high temperature oxidation of an Al-0·5% Mg alloy’, Corros. Sci., 1998, 40, (4–5), 557–575.
  • Tenorio J and Espinosa D: ‘High temperature oxidation of Al-Mg alloys’, Oxid. Met., 2000, 53, (3–4), 361–373.
  • Bloch J, Bottomley D, Mihaychuk J, Van Driel H and Timsit R: ‘Magnesium surface segregation and its effect on the oxidation rate of the (111) surface of Al-1·45at%Mg’, Surf. Sci., 1995, 322, (1–3), 168–176.
  • Panda E, Jeurgens L and Mittemeijer E: ‘Interface thermodynamics of ultra-thin, amorphous oxide overgrowths on AlMg alloys’, Acta Mater., 2010, 58, 1770–1781.
  • Frohlich K: Z. Metallkunde, 1936, 28, 368.
  • Zhu Y, Lu H, Jiang Q, Mimura K and Isshiki M: ‘Effect of alloying Mg on corrosion resistance of Cu at high temperature’, J. Electrochem. Soc., 2007, 154, (3), C153–C158.
  • Jin F, Luo Q, Zhou B and Li Q: ‘Modeling investigation of the oxidation kinetics of copper and aluminum alloys’, Adv. Mater. Res., 2012, 402, 17–21.
  • Dieter G: ‘Mechanical metallurgy’; 1976, New York, McGraw-Hill Inc.
  • Ikeda Y, Nii K and Yata M: ‘Y2O3 dispersion effect on Al2O3 protective coating examined on the basis of five models’, ISIJ Int., 1993, 33, (2), 298–306.
  • Galerie A, Caillet M and Pons M: ‘Oxidation of ion-implanted metals’, Mater. Sci. Eng., 1985, 69, (2), 329–340.
  • Czerwinski F, Szpunar J and Smeltzer W: ‘The growth and structure of thin oxide films on cerium ion-implanted nickel’, Metall. Mater. Trans. A, 1996, 27, 3649–3661.
  • Hou P and Stringer J: ‘The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25wt%Cr’, Oxid. Met., 1988, 29, 45–73.
  • Papaicovou P, Hussey R, Mitchell D and Graham M: ‘The effect of CeO2 coatings on the oxidation behaviour of Fe-20Cr alloys in O2 at 1173K’, Corros. Sci., 1990, 30, (4–5), 451–460.
  • Griguceviciene A, Leiartas K, Juskenas R and Juzeliunas E: ‘Structure and initial corrosion resistance of sputter deposited nanocrystalline Mg-A-Zr alloys’, Mater. Sci. Eng. A, 2005, 394, 411–416.
  • Seal S: ‘Lanthanide doped nanocrystalline ceria coatings for increasing oxidation resistance of stainless steel and associated methods’, US Patent, 8,435,602 B1, 2013.
  • Czerwinski F and Szpunar J: ‘The nanocrystalline sol-gel coatings for high-temperature applications’, J. Sol-Gel Sci. Technol., 1997, 9, 103–114.
  • Czerwinski F and Szpunar J: ‘Optimizing properties fo CeO2 sol-gel coatings for protection of metallic substrates against high temperature oxidation’, Thin Solid Films, 1996, 280, (1–2), 199–203.
  • Zhong C, Liu F, Wu Y, Le J, Liu L, He M, Zhu J and Hu W: ‘Protective diffusion coatings on magnesium alloys: a review of recent developments’, J. Alloys Compd., 2012, 520, 11–21.
  • Bennett M, Houlton M and Dearnaley G: ‘The influence of surface ion implantation of aluminum and yttrium upon oxidation behaviour of a Fe-15%Cr-4% Al Fecralloy stainless steel in air at 1100 °C’, Corros. Sci., 1989, 20, (1), 69–72.
  • Smeggil J, Shuskus A, Burilla C and Cipolli R: ‘Use of ion implantation techniques to characterize the oxidation of elemental nickel’, Surf. Coat. Technol., 1988, 36, (1–2), 27–36.
  • Cotell C, Yurek G, Hussey R, Mitchel D and Graham M: ‘The influence of grain boundary segregation of Y in Cr2O3 on the oxidation of chromium metal’, Oxid. Met., 1990, 34, 173–200.
  • XXXX: ‘Nomenclature of inorganic chemistry’, J. Am. Chem. Soc., 1960, 82, (21), 5523–5544.
  • Rokhlin L: ‘The regularities in the Mg-rich parts of the phase diagrams, phase transformations and mechanical properties of magnesium alloys with individual rare earth metals’, Arch. Metall. Mater., 2007, 52, (1), 5–11.
  • Kim Y, Yim C, Kim H and You B: ‘Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures’, Scr. Mater., 2011, 65, 958–961.
  • Okamoto H, Ce-Mg (Cerium-Magnesium), J. of Phas. Equili. and Diff., 2011, 32, (3), 265–266.
  • Okamoto H., Mg-Y (Magnesium-Yttrium), J. of Phas. Equili. and Diff., 1992, 13, (1), 105–106.
  • Beaudry B and Gschneidner K: ‘Handbook on the physics and chemistry of rare earth’, 173–232; 1978, Amsterdam, North-Holland Publishing Co.
  • McCafferty E: ‘Introduction to corrosion science’; 2010, New York, Springer.
  • Love B and Kleber E: ‘Rare earths: sixteen new metals are ready to use’, Mater. Des. Eng., 1960, 52, (5), 134–137.
  • Grigoriev Y and Sarkisyan A: ‘Ignition of metals with complex scale construction’, Combust. Explos. Shock Waves, 1979, 15, (4), 478–483.
  • Borchardt H: ‘On the oxidation of yttrium’, J. Inorg. Nucl. Chem., 1964, 26, 711–719.
  • Aghion E, Moscovitch N and Arnon A: ‘Mechanical properties of die-cast magnesium alloy MRI 230D’, J. Mater. Eng. Perform., 2009, 18, (7), 912–916.
  • Kammer K (ed.): ‘Magnesium taschenbuch’; 2000, Dusseldorf, Aluminium-Verlag.
  • Suzuki M, Kimura T, Koike J and Maruyama K: ‘Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys’, Scr. Mater., 2003, 48, 997–1002.
  • Kim J, Shin K, Kim K and Jung W: ‘Microstructure and mechanical properties of a thixocast Mg-Cu-Y alloy’, Scr. Mater., 2003, 49, (7), 687–691.
  • Anthony I, Kamado S and Kojima Y: ‘Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys’, Mater. Trans., 2001, 42, (7), 1206–1211.
  • Wu G, Zhang Y, Liu W and Ding W: ‘Microstructure evolution of semi-solid Mg-10Gd-3Y-0·5Zr alloy during isothermal heat treatment’, J. Magnes. Alloys, 2013, 1, (1), 39–46.
  • Ping D, Hono K and Nie J: ‘Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy’, Scr. Mater., 2003, 48, 1017–1022.
  • Liang M, Liao H, Ding W, Peng L and Fu P: ‘Microstructure characterization on Mg-2Nd-4Zn-1Zr alloy during heat treatment’, Trans. Nonferrous Met. Soc. China, 2012, 22, 2327–2333.
  • Homma T, Kunito N and Kamado S: ‘Fabrication of extraordinary high-strength magnesium alloy by hot extrusion’, Scr. Mater., 2009, 61, (6), 644–647.
  • Apps P, Karimzadeh H, King J and Lorimer G: ‘Precipitation reactions in magnesium rare earth alloys containing yttrium, gadolinium and disprosium’, Scr. Mater., 2003, 48, 1023–1028.
  • Hantasche K, Bohlen J, Wendt J, Kainer K, Yi S and Letzig D: ‘Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets’, Scr. Mater., 2010, 63, 725–730.
  • Kawamura Y, Hayashi K and Masumoto T: ‘Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa’, Mater. Trans., 2001, 42, (71), 1172–1176.
  • Zhu Y, Morton A and Nie J: ‘The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys’, Acta Mater., 2010, 58, (8), 2936–2947.
  • Czerwinski F and Zielinska-Lipiec A: ‘The microstructure evolution during semisolid molding of a creep resistant Mg-5Al-2Sr alloy’, Acta Mater., 2005, 53, (12), 3433–3444.
  • Ozdemir O, Gruzleski J and Drew R: ‘Effect of low-levels of strontium on the oxidation behaviour of selected molten aluminum-magnesium alloys’, Oxid. Met., 2009, 72, 241–257.
  • Chen H and Gong Z: ‘Oxidation behaviour of molten ZK60 and M20 magnesium alloys in 1,1,1,2-tetrafluoroethane/air atmospheres’, Trans. Nonferrous Met. Soc. China, 2012, 22, 2898–2905.
  • Perez P, Garces G and Adeva P: ‘Oxidation behavior of a PVD-processed Mg-10·6Zr alloy’, Oxid. Met., 2002, 58, (5–6), 607–621.
  • Wang L, Kim YLJ and You B: ‘Effect of hafnium carbide on the grain refinement of Mg-3wt% Al alloy’, J. Alloys Compd., 2010, 500, (1), L12–L15.
  • Liu C, Xin YTZ, Zhao J and Chu P: ‘Corrosion resistance of titanium ion implanted AZ91 magnesium alloy’, J. Vac. Sci. Technol. A, 2007, 25, (2), 334–339.
  • Shaw C and Jones H: ‘Structure and mechanical properties of two Mg-Al-Ca alloys consolidated from atomized powder’, Mater. Sci. Technol., 1999, 15, 79–84.
  • Suzuki A, Saddock N, Jones J and Pollock T: ‘Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys’, Acta Mater., 2005, 53, 2823–2834.
  • Bae G, Bae J, Kang D, Lee H and Kim N: ‘Effect of Ca addition on microstructure of twin- roll cast AZ31 Mg alloy’, Met. Mater. Int., 2009, 15, (1), 1–5.
  • Fechner D, Hort N, Blawert C, Dieringa H, Stoermer M and Kainer K: ‘The formation of Sr6·33Mg16·67Si13 in magnesium alloy AM50 and its effect on mechanical properties’, J. Mater. Sci., 2012, 47, (14), 5461–5469.
  • Wang G: ‘Mg-Al-Si-Mn-Ca alloy and method for preparing same’, China Patent, 866.473.6826, 2007.
  • Kielbus A, Rzychon T, Michalska J and Stopyra M: ‘The corrosion resistance of the Mg-Al-Ca-Sr sand casting magnesium alloys’, Defect Diffus. Forum, 2012, 326–328, 255–260.
  • Bettles C, Gibson M and Venkatesan K: ‘Enhanced age-hardening behaviour in Mg-4 wt% Zn micro-alloyed with Ca’, Scr. Mater., 2004, 51, 193–197.
  • Hirai K, Somekawa H, Takigawa Y and Higashi K: ‘Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature’, Mater. Sci. Eng. A, 2005, 403, 276–280.
  • Spassov T, Alves H and Koster U: ‘Oxidation of rapidly solidified Mg87Ni12Y1 alloy’, J. Alloys Compd., 2002, 336, 163–169.
  • Bak S and Lee D: ‘Effect of Y and Y2O3 on oxidation of AZ91D Mg alloy between 400 and 500 °C’, Trans. Nonferrous Met. Soc. China, 2009, 19, 871–874.
  • Wang X, Zeng X, Zhou Y, Wu G, Yao S and Lai Y: ‘Early oxidation behaviours of Mg-Y alloys at high temperatures’, J. Alloys Compd., 2008, 460, 368–374.
  • Lin P, Zhou H, Li W, li W, Zhao S and Su J: ‘Effect of yttrium addition on the oxide scale of AM50 magnesium alloy’, Corros. Sci., 2009, 51, 1128–1133.
  • Arrabal R, Pardo A, Merino M, Mohedano M, Casajus P, Paucar K and Matykina E: ‘Oxidation behaviour of AZ91D magnesium alloy containing Nd or Gd’, Oxid. Met., 2011, 76, 433–450.
  • Liu J, Li Y and Wang F: ‘The high-temperature oxidation behaviour of Mg-Gd-Y-Zr alloy’, Oxid. Metals, 2009, 71, 319–334.
  • You B, Park W and Chung I: ‘The effect of calcium addition to magnesium on the microstructure and compositional changes of oxide film formed at high temperature’, Mater. Trans., 2001, 42, (6), 1139–1141.
  • Cheng S, Yang G, Fan J, Li Y and Zhou Y: ‘Effect of Ca and Y additions on oxidation behaviour of AZ91D alloy at elevated temperatures’, Trans. Nonferrous Met. Soc. China, 2009, 19, 299–304.
  • You B, Park W and Chung I: ‘The effect of calcium additions on oxidation behaviour of magnesium alloys’, Scr. Mater., 2000, 42, 1089–1094.
  • Fan J, Yang G, Cheng S, Xie H, Hao W, Wang M and Zhou Y: ‘Surface oxidation behaviour of Mg-Y-Ce alloys at high temperatures’, Metall. Mater. Trans. A, 2005, 36, (1), 235–239.
  • Rao J and Li H: ‘Oxidation and ignition behaviour of a magnesium alloy containing rare earth elements’, Int. J. Adv. Manuf. Technol., 2010, 51, 225–231.
  • Ning Z, Liang W and Sun J: ‘The effect of Y on the oxidation of Mg-Zn-Zr alloys’, Int. J. Mod. Phys. B, 2009, 23, 796.
  • Wang X, Wu W, Tang Y, Zeng X and Yao S: ‘Early high temperature oxidation behaviours of Mg-10Gd-3Y alloys’, J. Alloys Compd., 2009, 474, 499–504.
  • Stumphy B, Mudryk Y, Russell A, Herman D and Gschneider K: ‘Oxidation resistance of B2 rare earth-magnesium intermetallic compounds’, J. Alloys Compd., 2008, 460, (1–2), 363–367.
  • Wang X, Zeng X, Wu G, Yao S and Li L: ‘Surface oxidation of MgNd alloys’, Appl. Surf. Sci., 2007, 253, 9017–9023.
  • Aydin D, Bayindir Z, Hoseini M and Pekguleryuz M: ‘The high temperature oxidation and ignition behaviour of Mg-Nd alloys part I: the oxidation of dilute alloys’, J. Alloys Compd., 2013, 569, 35–44.
  • Przeligorz R and Piatkowski J: ‘On the oxidation behavior of WE43 and MSR-B magnesium alloy sin CO2 atmosphere’, Solid State Phenom., 2012, 191, 159–168.
  • Kielbus A, Rzychon T and Przeligorz R: ‘Oxidation behaviour of WE54 and Electron 21 magnesium alloys’, Defect Diffus. Forum, 2011, 312–315, 483–488.
  • Choi B, You B, Park W, Huang Y and Park I: ‘Effect of Ca additions on the oxidation resistance of AZ91 magnesium alloys at elevated temperatures’, Metals Mater. Int., 2003, 9, (4), 395–398.
  • Lee D, Hong L and Kim Y: ‘Effect of Ca and CaO on the high temperature oxidation of AZ91D Mg alloys’, Mater. Trans., 2008, 49, (5), 1084–1088.
  • Lee D: ‘High temperature oxidation of AZ31+0·3 wt%Ca and AZ31+0·3%CaO magnesium alloys’, Corros. Sci., 2013, 70, 243–251.
  • You B, Kim Y, Park M and Chung W: ‘Effects of Al and Y additions on the oxidation behaviour of Mg-Ca base molten alloys’, Mater. Sci. Forum, 2003, 419–422, 581–586.
  • Zhao S, Zhou H, Zhou T, Zhang Z, Lin P and Ren L: ‘The oxidation resistance and ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La’, Corros. Sci., 2013, 67, 75–81.
  • Paul A, Sanchez R, Montes O and Odriozola J: ‘The role of silicon in the reactive element effect on the oxidation of conventional austenitic stainless steels’, Oxid. Metals, 2007, 67, (1–2), 87–105.
  • Wang X, Zeng X, Wu G, Yao S and Lai Y: ‘Surface analysis and oxidation behaviour of Y-ion implanted AZ31’, Appl. Surf. Sci., 2006, 253, (7), 3574–3580.
  • Wang X, Zeng X, Wu G and Yao S: ‘The effect of Y-ion implantation on the oxidation of AZ31 magnesium alloy’, Mater. Lett., 2007, 61, (4–5), 968–970.
  • Ding W, Wang X, Zeng W, Wu G, Yao S and Lai Y: ‘Cyclic oxidation behaviour of cerium implanted AZ31 magnesium alloys’, Mater. Lett., 2007, 61, (6), 1429–1432.
  • Wang X, Zeng X, Wu G, Yao S and Li L: ‘Oxidation kinetics of magnesium alloys treated by tantalum ion implantation’, Nucl. Instrum. Methods Phys. Res. B, 2007, 263, (2), 401–406.
  • Wang X, Zhang X, Wu G, Yao S and Lai Y: ‘The effects of cerium implantation on the oxidation behaviour of AZ31 magnesium alloy’, J. Alloys Compd., 2008, 456, 384–389.
  • Cruz M, Melo A and Soares J: ‘High resolution studies of internal oxidation of hafnium implanted magnesium single crystals’, Nucl. Phys. Appl. Mater. Sci. NATO ASI Ser., 1988, 144, 263–268.
  • Lamaka S, Montemor M, Galio A, Zheludkevich M, Trindade C, Dick L and Ferreira M: ‘Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy’, Electrochim. Acta, 2008, 53, 4773–4783.
  • Davenport A, Padovani C, Connolly B, Stevens N, Beale T, Groso A and Stampanoni M: ‘Synchrotron X-ray microtomography study of the role of Y in corrosion of magnesium alloy WE43’, Electrochem. Solid State Lett., 2007, 10, C5–C8.
  • Koltygin A and Bazlova T: ‘Effect of low additives of calcium on corrosion resistance of alloys of the Mg-Al-Zn-Mn system’, Met. Sci. Heat Treat., 2012, 53, (11–12), 584–588.
  • Ghayad I, Girgis N and Azim A: ‘Effect of some alloying elements and heat treatment on the corrosion behavior ofAZ91 and ZM60 magnesium alloys’, Int. J. Metall. Mater. Sci. Eng., 2013, 3, (2), 21–32.
  • Wu G, Fan Y, Gao H, Zhai C and Zhu Y: ‘The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D alloy’, Mater. Sci. Eng. A, 2005, 408, (1–2), 255–263.
  • Chang J, Guo X, He S, Fu P, Peng L and Ding W: ‘Investigation of the corrosion for Mg-xGd-3Y-0·4Zr (x = 6,8,10,12 wt%) alloys in a peak-aged conditions’, Corros. Sci., 2008, 50, 166–177.
  • Liu W, Cao F and Zhong L: ‘Influence of rare earth element Ce and La addition on corrosion behaviour of AZ91 magnesium alloy’, Mater. Corros., 2009, 60, (10), 795–803.
  • Liu M, Schmutz P, Uggowitzer P, Song G and Atrens A: ‘The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys’, Corros. Sci., 2010, 52, 3687–3701.
  • Kielbus A: ‘Corrosion resistance of Elektron 21 magnesium alloy’, J. Achiev. Mater. Manuf. Eng., 2007, 22, (1), 29–32.
  • Zeng R, Dietzel W, Witte F, Hort N and Blawert C: ‘Progress and challenge for magnesium alloys as biomaterials,’ Adv. Biomaterials, 10, (1), pp. B3-B13, 2008.
  • Majumdar J, Bhattacharyya U, Biswas A and Manna I: ‘Studies of thermal oxidation of Mg-alloy(AZ91) for improving corrosion and wear resistance’, Surf. Coat. Technol., 2008, 202, 3638–3642.
  • Dolan S: ‘Light metal anodizing’, US Patent, 6,797,147, 2004.
  • El-Mahallawy N, Shoeib M and Abouelenain M: ‘AZ91 magnesium alloy: anodizing of using environmental friendly electrolytes’, J. Surf. Eng. Mater. Adv. Technol., 2011, 1, 62–72.
  • Chai L, Yu X, Yang Z, Wang Y and Okido M: ‘Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking’, Corros. Sci., 2008, 50, 3274–3279.
  • Zhang R: ‘Film formation in the second step of micro-arc oxidation on magnesium alloys’, Corros. Sci., 2010, 52, 1285–1290.
  • Choi Y, Salman S, Kuroda K and Okido M: ‘Improvement in corrosion characteristics of AZ31 Mg alloy by square pulse anodizing between transpassive and active regions’, Corros. Sci., 2012, 63, 5–11.
  • Sinebryukhov S, Sidorova M, Egorkin VNP, Ustinov A, Volkova E and Gnedenkov S: ‘Protective oxide coatings on Mg-Mn-Ce, Mg-Zn-Zr, Mg-Al-Zn-Mn, Mg-Zn-Zr-Y and Mg-Zr-Nd magnesium based alloys’, Protect. Metals Phys. Chem. Surf., 2012, 48, (6), 678–687.
  • Song G: ‘An irreversible dipping sealing technique for anodized ZE41 Mg alloy’, Surf. Coat. Technol., 2009, 203, 3618–3625.
  • Hwang D, Cho J, Lee D, Yoo B and Shin D: ‘Plasma electrolytic oxidation of AZ91 Mg alloy in the sodium stannate electrolyte’, Mater. Trans., 2008, 49, (7), 1600–1605.
  • Hwang D, Ko G, Kim Y, Yoo B and Shin H: ‘Influence of post-annealing on the oxide layer of AZ91 Mg alloy prepared by plasma electrolytic oxidation’, Mater. Trans., 2010, 51, (2), 408–412.
  • Wang C, Zhu S, Jiang S and Wang F: ‘Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance’, Corros. Sci., 2009, 51, 2916–2923.
  • Laleh M, Kargar F and Rouhaghdam A: ‘Formation of a compact oxide layer on AZ91D magnesium alloy by microarc oxidation via addition of cerium chloride into the MAO electrolyte’, JCT Res., 2011, 8, (6), 765–771.
  • Laleh M, Kargar F and Rouhaghdam A: ‘Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy’, J. Rare Earths, 2012, 30, (11), 1293–1297.
  • Mebarki N, Kumar R, Blandin J, Suery M, Pelloux F and Khelifati G: ‘Correlation between ignition and oxidation behaviors of AZ91 magnesium alloy’, Mater. Sci. Technol., 2005, 21, (10), 1145–1151.
  • Prassad A, Shi Z and Atrens A: ‘Flammability of Mg-X binary alloys’, Adv. Eng. Mater., 2012, 14, 772–784.
  • Blandin J, Grosjean E, Suery M, Ravi Kumar N and Mebarki N: ‘Ignition resistance of various magnesium alloys’, in ‘Magnesium technology’ (ed. A. A. Luo), 235–240; 2004, TMS Materials, Park Ohio, USA.
  • Ravi Kumar N, Blandin J, Suerry M and Grosjean E: ‘Effect of alloying elements on the ignition resistance of magnesium alloys’, Scr. Mater., 2003, 49, (225–230), 225–230.
  • Fassell W, Gulbransen L, Lewis J and Hamilton J: ‘Ignition temperature of magnesium and magnesium alloys’, J. Metals, 1951, 3, (7), 522–528.
  • Zhao H, Zhang Y and Kang Y: ‘Effect of cerium on ignition point of AZ91D magnesium alloy’, China Foundry, 2007, 5, (1), 32–35.
  • You B, Park W and Chung I: ‘Supression of magnesium oxidation by calcium additions’, in ‘Magnesium 2000’, (eds. E. Aghion and D. Eliezer), 377–383; 2000, Dead Sea Magnesium (DSM).
  • Kim S, Lee J, Yoon Y and Jo H: ‘Development of AZ31 Mg alloy wrought process route without protective gas’, J. Mater. Process. Technol., 2007, 187–188, 757–760.
  • Rao J, Li H and Xue H: ‘Ignition-proof mechanism of ZM5 magnesium alloy added with rare earth’, J. Cent. South Univ. Technol., 2010, 17, (1), 28–33.
  • Fan J, Yang C, Han G, Fang S, Yang W and Xu B: ‘Oxidation behavior of ignition proof magnesium alloys with rare earth addition’, J. Alloys Compd., 2011, 509, 2137–2142.
  • Wu Y, Peng L, Zhao S, Li D, Huang F and Ding W: ‘Ignition-proof properties of a high strength Mg-Gd-Ag-Zr alloy’, J. Shanghai Jiaotong Univ., 2012, 17, (6), 643–647.
  • Zhao W, Shi Z, Wang Z, Li Y, Ding J, Hur B and Zhao R: ‘Effect of rare-earth elements on ignition-proof behavior of industrial pure magnesium’, Mater. Sci. Forum, 2010, 654–656, 1464–1467.
  • Li W, Zhou H, Zhou WLW and Wang M: ‘Effect of cooling rate on ignition point of AZ91D-).98 wt% Ce magnesium alloy’, Mater. Lett., 2007, 61, 2772–2774.
  • Lin P, Zhou H, Li W, Li W, Sun N and Yang R: ‘Interactive effect of cerium and aluminum on the ignition point and the oxidation resistance of magnesium alloys’, Corros. Sci., 2008, 50, 2669–2675.
  • Zeng X, Wang Q, Lu Y, Zhu Y, Ding W and Zhao Y: ‘Influence of beryllium and rare earth additions on ignition-proof magnesium alloys’, J. Mater. Process. Technol., 2001, 112, 17–23.
  • Huang Y, Chung I, You B, Park W and Choi B: ‘Effect of Be addition on the oxidation behaviour of Mg-Ca alloys at elevated temperatures’, Metals Mater. Int., 2004, 10, (1), 7–11.
  • Liu M, Shih D, Parish C and Atrens A: ‘The ignition temperature of magnesium alloys: WE43, AZ31 and AZ91’, Corros. Sci., 2012, 54, 139–142.
  • Baker T and Miller T: ‘Ultraviolet radiation from combustion of a dense magnesium powder flow in air’, J. Thermophys. Heat Transfer, 2013, 27, (1), 22–29.
  • Dreizin E, Berman C and Vicenzi E: ‘Condensed-phase modification in magnesium particle combustion in air’, Combust. Flame, 2000, 122, 30–42.
  • Boris P: ‘A study of the flammability of magnesium’; 1964, Washington, Federal Aviation Agency.
  • Jafari H, Idris M and Ourdjini A: ‘High temperature oxidation of AZ91D magnesium alloy granule during in-situ melting’, Corros. Sci., 2011, 53, 655–663.
  • Gray D. E, (Ed.), American Institute of Physics Handbook, 2-nd edition, McGraw-Hill Book Company, New York, 1963.
  • Fujii H, Izutani S, Matsumoto T, Kiguchi S and Nogi K: ‘Evaluation of unusual change in contact angle between MgO and molten magnesium’, Mater. Sci. Eng. A, 2006, 417, 99–103.
  • Kim S, Kim D, You B, Han J and Kim M: ‘Evaporation behaviour of magnesium under reduced pressure’, Mater. Sci. Forum, 2003, 439, 238–243.
  • Leong K, Kornecki G, Sanders P and Keske J: ‘Laser beam welding of AZ31B-H24 magnesium alloy’, in ‘Laser materials processing conference’, 28–36; 1998, Orlando, FL.
  • Wang J, Nishimura H, Katayama S and Mizutani M: ‘Evaporation phenomena of magnesium during pulsed-MIG arc welding of aluminum alloy’, Trans. JWRI, 2010, 39, (2), 19–21.
  • Wang J, Nishimura H, Katayama S and Mizutani M: ‘Evaporation phenomena of magnesium from droplet at welding wire tip in pulsed MIG arc welding of aluminum alloys’, Sci. Technol. Weld. Joining, 2011, 16, (5), 418–424.
  • Golovin A and Petrukhin A: ‘Some features of the evaporation of magnesium and lead by quasi-cw laser radiation’, J. Quantum Electron, 1985, 15, 846.
  • Luo Y: ‘Modeling and analysis of vaporizing during vacuum electron beam welding of magnesium alloy’, Appl. Math. Model., 2013, 37, (9), 6177–6182.
  • Aarstad K: ‘Protective films on molten magnesium’, PhD thesis, Norwegian University of Science and Technology, 2004.
  • Haginoya I and Fukusako T: ‘Oxidation of molten Al-Mg alloys’, Trans. Japan Inst. Metals, 1983, 24, (9), 613–619.
  • Reimers H: ‘Method for inhibiting the oxidation of readily oxidizable metals’, US Patent, 1,972,317, 1934.
  • Fruehling J: ‘Protective atmospheres for molten magnesium’, PhD thesis, The University of Michigan, 1970.
  • Couling S, Bennett F and Leontis T: ‘Melting magnesium under air/SF6 protective atmospheres’, Light Met. Age, 1977, 35, 12–21.
  • Mirak A, Davidson C and Taylor J: ‘Characterization of fresh surface oxidation films formed on pure molten magnesium in different atmospheres’, Corros. Sci., 2010, 52, 1992–2000.
  • Cashion S, Rickettes N and Hayes P: ‘Characterization of protective surface films formed on molten magnesium protected by air/SF6 atmospheres’, J. Light Metals, 2002, 2, (1), 37–42.
  • Dorsan H: ‘Magnesium melting/casting and remelting furnaces’, in ‘Magnesium technology 2000’, (eds. H. I. Kaplan, J. Hryn, and B. Clow), The Minerals, Metals and Materials Society, Materials Park, Ohio, USA, 99–106; 2000.
  • Pettersen G, Ovrelid E, Tranell G, Fenstad J and Gjestland H: ‘Characterization of the surface films formed on molten magnesium in different protective atmospheres’, Mater. Sci. Eng. A, 2002, 332, 285–294.
  • Ha W and Kim Y: ‘Effects of cover gases on melt protection of Mg alloys’, J. Alloys Compd., 2006, 422, (1–2), 208–213.
  • Liu J, Chen H, Zhao L and Huang W: ‘Oxidation behaviour of molten magnesium and AZ91D magnesium alloy in 1, 1, 1, 2-tetrafluoroethane/air atmospheres’, Corros. Sci., 2009, 51, 129–134.
  • Chen H: ‘Effect of melt temperature on the oxidation behaviour of AZ91D magnesium alloy in 1,1,1,2-tetrafluoroethane/aie atmospheres’, Mater. Char., 2010, 61, 894–898.
  • Vinarcik E: ‘High integrity die casting processes’; 2003, New York, John Wiley & Sons Inc.
  • Chen Y and Wei P: ‘Diagnosis and analysis of oxide films in cast magnesium alloys by ultrasonic vibration treatment’, Mater. Trans., 2007, 48, (12), 3181–3189.
  • Fan Z and Liu G: ‘Solidification behaviour of AZ91D alloy under intensive forced convection in the RDC process’, Acta Mater., 2005, 53, 4345–4357.
  • Fan Z, Wang Y, Xia M and Arunuganathar S: ‘Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing’, Acta Mater., 2009, 57, 4891–4901.
  • Men H, Jiang B and Fan Z: ‘Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt’, Acta Mater., 2010, 58, 6526–6534.
  • Fan Z: ‘An epitaxial model for heterogeneous nucleation on potent substrates’, Metall. Mater. Trans. A, 2013, 44, 1409–1418.
  • Wang Y, Li H and Fan Z: ‘Oxidation of aluminum alloy melts and inoculation by oxide particles’, Trans. Indian Inst. Metals. 2012 online publication: DOI 10.1007/s12666-012-0194-x
  • Zhang M, Kelly P, Qian M and Taylor J: ‘Crystallography of grain refinement in Mg-Al based alloys’, Acta Mater., 2005, 53, (11), 3261–3270.
  • Wang Y, Fan Z and Thompson G: ‘Characterization of magnesium oxide and its interface with alpha Mg in Mg-Al based alloys’, Philos. Mag. Lett., 2011, 91, (8), 516–529.
  • Garcia-Cordovilla C, Louis E and Pamies A: ‘The surface tension of liquid pure aluminum and aluminum-magnesium alloys’, J. Mater. Sci., 1986, 21, 2787–2792.
  • Deng Z, Li W and Li W: ‘Effects of Ce concentrations on ignition temperature and surface tension of Mg-9wt%Al alloy’, China Foundry Res. Dev., 2013, 10, (2), 108–111.
  • Iida T and Guthrie R: ‘The physical properties of liquid metals’; 1988, Oxford, Clarendon Press.
  • Bainbridge I and Taylor J: ‘The surface tension of pure aluminum and aluminum alloys’, Metall. Mater. Trans. A, 2013, 44, (8), 3901–3909.
  • Meng X, Zhao W and Ding J: ‘Study of interfacial tension and flammability of Mg-Ca-Ce alloy melt’, Adv. Mater. Res., 2012, 418–420, 383–386.
  • Whittle D and Stringer J: ‘Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions’, Philos. Trans. Royal Soc. A, 1980, 295, 309–329.
  • Moon D and Bennett M: ‘The effects of reactive element oxide coatings on the oxidation behaviour of metals and alloys at high temperatures’, Mater. Sci. Forum, 1989, 43, 269–298.
  • Saito Y and Onay B: ‘Improvements of scale adherence on heat-resisting alloys and coatings by rare-earth additions’, Surf. Coat. Technol., 1990, 43–44, 336–346.
  • Pint B: ‘Experimental observations in support of the dynamic segregation theory to explain the reactive element effect’, Oxid. Metals, 1996, 45, 1–37.
  • Pint B: ‘Progress in understanding the reactive element effect since the Whittle and Stringer literature review’, in ‘John Stringer symposium on high temperature corrosion’, (eds. P. F. Torterelli, I. G. Wright, and P. Hou), 9–19; 2001, Warrendale, PA, ASM International.
  • Przybylski K, Garatt-Rheed A and Yurek A: ‘Grain boundary segregation of yttrium in chromia scales’, J. Electrochem. Soc., 1988, 135, 509–517.
  • Funkenbusch A, Smegill J and Bornstein N: ‘Reactive element-sulfur interaction and oxide scale adherence’, Metall. Trans. A, 1985, 16, 1164–1166.
  • Stringer J: ‘The effect of alloying on oxidation: quantitative treatments’, Metall. Rev., 1966, 11, 113–128.
  • Anderson A, Mehandru S and Smialek J: ‘Dopant effect of yttrium and the growth and adherence of alumina on nickel-aluminum alloys’, J. Electrochem. Soc., 1985, 132, (7), 1695–1701.
  • Czerwinski F and Szpunar J: ‘The influence of the crystallographic orientation of nickel surface on oxidation inhibition by ceria coatings’, Acta Mater., 1998, 46, 1403–1417.
  • Czerwinski F, Zhilayev A and Szpunar J: ‘Grain boundary character distribution in oxide grown on (100) and (111) Ni single crystals coated with ceria gel’, Corros. Sci., 1999, 41, 1703–1713.
  • Czerwinski F: ‘On the use of the micro-marker technique for studying the growth mechanism of thin oxide films’, Acta Mater., 2000, 48, 721–733.
  • Czerwinski F, Sproule G, Graham M and Smeltzer W: ‘18O-SIMS study of oxide growth on nickel modified with Ce implants and CeO2 coatings’, Corros. Sci., 1995, 37, 541–556.
  • Czerwinski F: ‘Oxidation characteristics of magnesium alloys’, JOM, 2012, 64, (12), 1477–1483.
  • Hirsch L and Shankland T: ‘Equilibrium point defect concentrations in MgO: understanding the mechanisms of conduction and diffusion and the role of iron impurities’, J. Geophys. Res., 1991, 95, 385–403.
  • Alfe D and Gillan M: ‘Schottky defect formation in MgO calculated by diffusion Monte Carlo’, Phys. Rev. B, 2005, 72, (1), 220101.
  • Van Orman J and Crispin K: ‘Diffusion in oxides’, Rev. Mineral. Geochem., 2010, 71, 725–825.
  • Duffy D and Tasker P: ‘Theoretical studies of diffusion processes down coincident grain boundaries in NiO’, Philos. Mag., 1986, A54, 759–771.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.