1,345
Views
33
CrossRef citations to date
0
Altmetric
Full Critical Review

Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering

, &
Pages 353-375 | Received 20 Jul 2014, Accepted 23 Mar 2015, Published online: 19 May 2015

References

  • E. Subbarao: ‘Zirconia – an overview’, in ‘Science and technology of zirconia’, (eds. A. Heuer and L. Hobbs., 1–24; 1981, Columbus, OH, American Ceramic Society.
  • M. Bocanegra-Bernal and S. Díaz de la Torre: ‘Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics’, J. Mater. Sci., 2002, 37, (23), 4947–4971.
  • V. Kharton, F. Marques and A. Atkinson: ‘Transport properties of solid oxide electrolyte ceramics: a brief review’, Solid State Ionics, 2004, 174, (1–4), 135–149.
  • R. Gravie, R. Hannink and R. Pascoe: ‘Ceramic steel?’, Nature, 1975, 258, 703–704.
  • I. Nettleship and R. Stevens: ‘Tetragonal zirconia polycrystal (TZP) – a review’, Int. J. High Technol. Ceram., 1987, 3, (1), 1–32.
  • S. Singhal and K. Kendall: ‘High temperature solid oxide fuel cells: fundamentals, design, and applications’; 2003, Oxford, NY, Elsevier.
  • K. Lu: ‘Nanoparticulate materials: synthesis, characterization, and processing’; 2012, New York, Wiley.
  • P. Becher and M. Swain: ‘Grain-size-dependent transformation behavior in polycrystalline tetragonal zirconia’, J. Am. Ceram. Soc., 1992, 75, 493–502.
  • S. Hui, J. Roller, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric and D. Ghosh: ‘A brief review of the ionic conductivity enhancement for selected oxide electrolytes’, J. Power Sources, 2007, 172, (2), 493–502.
  • J. Groza and R. Dowding: ‘Nanoparticulate materials densification’, Nanostruct. Mater., 1996, 7, (7), 749–768.
  • J. R. Groza: ‘Sintering of nanocrystalline powders’, Int. J. Powder Metall., 1999, 35, (7), 59–66.
  • K. Lu: ‘Sintering of nanoceramics’, Int. Mater. Rev., 2008, 53, 21–38.
  • M. Mayo: ‘Processing of nanocrystalline ceramics from ultrafine particles’, Int. Mater. Rev., 1996, 41, 1743–2804.
  • P. Bowen and C. Carry: ‘From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides’, Powder Technol., 2002, 128, 248–255.
  • V. Srdic, M. Winterer and H. Hahn: ‘Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis’, J. Am. Ceram. Soc., 2000, 83, (8), 1853–1860.
  • D. Hotza, A. Leo, J. Sunarso and J. Costa: ‘Effect of nano-Al2O3 addition on the densification of YSZ electrolytes’, J. Nano Res., 2009, 6, 115–122.
  • X. Chen, K. Khor, S. Chan and L. Yu: ‘Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte’, Mater. Sci. Eng. A, 2002, 335, 246–252.
  • D. Lewis, R. Rayne, B. Bender, L. Kurihara, G. Chow, A. Fliflet, A. Kincade and R. Bruce: ‘Conventional and high frequency microwave processing of nanophase ceramic materials’, Nanostruct. Mater., 1997, 9, 97–100.
  • M. Omori: ‘Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)’, Mater. Sci. Eng. A, 2000, 287, (2), 183–188.
  • R. Raj: ‘Joule heating during flash-sintering’, J. Eur. Ceram. Soc., 2012, 32, (10), 2293–2301.
  • R. Enneti, S. Park, R. German and S. Atre: ‘Review: thermal debinding process in particulate materials processing’, Mater. Manuf. Processes, 2012, 27, (2), 103–118.
  • A. De Noni Jr, D. Hotza, V. Cantavella and E. Sanchez: ‘Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates’, J. Eur. Ceram. Soc., 2009, 29, (6), 1039–1046.
  • H. Palmour and D. Johnson: ‘Phenomenological model for rate-controlled sintering’, in ‘Sintering and related phenomena’, (eds. G. Kuczynski, N. Hooton and C. Gibbon., 779–791; 1967, New York, Gordon & Breach.
  • H. Palmour and T. Hare: ‘Rate controlled sintering revisited’, in ‘Sintering’, (ed. H. Palmour., 17–34; 1987, New York, Springer.
  • R. Kvachkov, A. Yanakiev, C. Poulieff, P. Yankulov, S. Rashkov and E. Budevski: ‘Two-step continuous sintering schedules for β-Al2O3 ceramics’, Solid State Ionics, 1982, 7, (2), 151–155.
  • F. Lin, L. De Jonghe and M. Rahaman: ‘Microstructure refinement of sintered alumina by a two-step sintering technique’, J. Am. Ceram. Soc., 1997, 80, (9), 2269–2277.
  • I. Chen and X. Wang: ‘Sintering dense nanocrystalline ceramics without final stage grain growth’, Nature, 2000, 404, 168–171.
  • X. Wang, P. Chen and I. Chen: ‘Two-step sintering of ceramics with constant grain-size, I: Y2O3’, J. Am. Ceram. Soc., 2006, 89, 431–437.
  • X. Wang, P. Chen and I. Chen: ‘Two-step sintering of ceramics with constant grain-size, II-BaTiO3 and Ni-Cu-Zn ferrite’, J. Am. Ceram. Soc., 2006, 89, (2), 438–443.
  • D. Garcia, A. Klein and D. Hotza: ‘Advanced ceramics with dense and fine-grained microstructures through fast firing’, Rev. Adv. Mater. Sci., 2012, 30, 273–281.
  • R. Castro and K. Von Benthem (eds.): ‘Sintering – mechanisms of convention, nanodensification and field assisted processes’; 2013, New York, Springer.
  • M. Bengisu (ed.): ‘Engineering ceramics’, 2001, New York, Springer.
  • D. Segal: ‘Chemical synthesis of ceramic materials’, J. Mater. Chem., 1997, 7, (8), 1297–1305.
  • J. Binner, B. Vaidhyanathan, A. Paul, K. Annaporani and B. Raghupathy: ‘Compositional effects in nanostructured yttria partially stabilized zirconia’, Int. J. Appl. Ceram. Technol., 2011, 8, 766–782.
  • I. Santacruz, K. Annapoorani and J. Binner: ‘Preparation of high solids content nanozirconia suspensions’, J. Am. Ceram. Soc., 2008, 91, 398–405.
  • NanoAmor: ‘Zirconia-Yttria (ZrO2-3Y, 50 nm)’. 2015 [Online], available at: http://www.nanoamor.com/inc/sdetail/24190 (accessed 3 2015).
  • M. Trunec and K. Maca: ‘Compaction and pressureless sintering of zirconia nanoparticles’, J. Am. Ceram. Soc., 2007, 90, (9), 2735–2740.
  • Tosoh: ‘Zirconia powders’. 2015 [Online], available at: http://www.tosoh.com/our-products/advanced-materials/zirconia-powders (accessed 3 2015).
  • M. Mazaheri, A. Simchi and F. Golestani-Fard: ‘Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering’, J. Eur. Ceram. Soc., 2008, 28, 2933–2939.
  • Zircar: ‘Zirconia powder’. 2015 [Online], available at: http://zircarzirconia.com/products/type-zyp-zirconia-powder/ (accessed 3 2015).
  • R. Corriu: ‘Ceramics and nanostructures from molecular precursors’, Angew. Chem. Int. Ed., 2000, 39, (8), 1376–1398.
  • L. Mädler, H. Kammler, R. Mueller and S. Pratsinis: ‘Controlled synthesis of nanostructured particles by flame spray pyrolysis’, J. Aerosol Sci., 2002, 33, (2), 369–389.
  • J. Seo and B. Hong: ‘Thermal plasma synthesis of nano-sized powders’, Nucl. Eng. Technol., 2012, 44, (5), 9–20.
  • H. Birol, C. Rambo, M. Guiotoku and D. Hotza: ‘Preparation of ceramic nanoparticles via cellulose-assisted glycine nitrate process: a review’, RSC Adv., 2013, 3, 2873–2884.
  • C. Laberty-Robert, F. Ansart, C. Deloget, M. Gaudon and A. Rousset: ‘Powder synthesis of nanocrystalline ZrO2-8Y2O3 via a polymerization route’, Mater. Res. Bull., 2001, 36, (12), 2083–2101.
  • M. Valefi, C. Falamaki, T. Ebadzadeh and M. Solati-Hashjin: ‘New insights of the glycine-nitrate process for the synthesis of nano-crystalline 8YSZ’, J. Am. Ceram. Soc., 2008, 90, –2014.
  • W. Groot-Zevert, A. Winnubst, G. Theunissen and A. Burggraaf: ‘Powder preparation and compaction behavior of fine-grained Y-TZP’, J. Mater. Sci., 1990, 25, 3449–3455.
  • A. Benedetti, G. Fagherazzi, F. Pinna and S. Polizzi: ‘Structural properties of ultra-fine zirconia powders obtained by precipitation methods’, J. Mater. Sci., 1990, 25, 1473–1478.
  • B. Djuričić, S. Pickering, D. McGarry, P. Glaude, P. Tambuyser and K. Schuster: ‘The properties of zirconia powders produced by homogeneous precipitation’, Ceram. Int., 1995, 21, (3), 195–206.
  • R. Nitsche, M. Rodewald, G. Skandan, H. Fuess and H. Hahn: ‘HRTEM study of nanocrystalline zirconia powders’, Nanostruct. Mater., 1996, 7, (5), 535–546.
  • H. Lee, W. Riehemann and B. Mordike: ‘Sintering of nanocrystalline ZrO2 and zirconia toughened alumina (ZTA)’, J. Eur. Ceram. Soc., 1992, 10, 245–253.
  • M. Gaudon, E. Djurado and N. Menzler: ‘Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis’, Ceram. Int., 2004, 30, (8), 2295–2303.
  • D. Vollath and K. Sickafus: ‘Synthesis of nanosized ceramic oxide powders by microwave plasma reactions’, Nanostruct. Mater., 1992, 1, 427–437.
  • V. Srdic, M. Winterer and H. Hahn: ‘Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis’, J. Am. Ceram. Soc., 2000, 83, (4), 729–736.
  • K. Maca, M. Trunec and P. Dobsak: ‘Bulk zirconia nanoceramics prepared by cold isostatic pressing and pressureless sintering’, Rev. Adv. Mater. Sci., 2005, 10, 84–88.
  • C. Feng, H. Qiu, J. Guo, D. Yan and W. Schulze: ‘Fast firing of nanoscale ZrO2+2·8 mol% Y2O3 ceramic powder synthesized by the sol-gel process’, J. Mater. Synth. Process., 1995, 3, 25–29.
  • C. Feng, E. Shi, J. Guo, D. Yan and W. Schulze: ‘Characterization and fast-firing of nanoscale ZrO2+3 mol% Y2O3 ceramic powder prepared by hydrothermal processing’, J. Mater. Synth. Process., 1995, 3, 31–37.
  • O. Vasylkiv and Y. Sakka: ‘Synthesis and colloidal processing of zirconia nanopowder’, J. Am. Ceram. Soc., 2001, 84, (11), 2489–2494.
  • Ł. Zych and K. Haberko: ‘Filter pressing and sintering of a zirconia nanopowder’, J. Eur. Ceram. Soc., 2006, 26, 373–378.
  • M. Mayo: ‘Synthesis and applications of nanocrystalline ceramics’, Mater. Des., 1993, 14, (6), 323–329.
  • M. Mayo: ‘Processing nanocrystalline ceramics for applications in superplasticity’, Mater. Sci. Eng. A, 1993, 66, 145–159.
  • P. Durán, M. Vilegas, F. Capel and C. Moure: ‘Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powder’, J. Eur. Ceram. Soc., 1996, 16, 945–952.
  • P. Durán, M. Villegas, J. Fernández, F. Capel and C. Moure: ‘Theoretically dense and nanostructured ceramics by pressureless sintering of nanosized Y-TZP powders’, Mater. Sci. Eng. A, 1997, 232, 168–176.
  • P. Durán, M. Villegas, F. Capel, J. Fernándes and C. Moure: ‘Nanostructured and near defect-free ceramics by low-temperature pressureless sintering of nanosized Y-TZP powders’, J. Mater. Sci., 1997, 32, 4507–4512.
  • D. Mæland, C. Suciu, I. Wærnhus and A. Hoffmann: ‘Sintering of 4YSZ (ZrO2+4 mol% Y2O3) nanoceramics for solid oxide fuel cells (SOFCs), their structure and ionic conductivity’, J. Eur. Ceram. Soc., 2009, 29, 2537–2547.
  • E. Lena, A. Chinelatto, A. Chinelatto and A. Przybysz: ‘Sintering of yttria stabilized zirconia in tetragonal phase by two steps sintering’, Mater. Sci. Forum, 2012, 727-728, 1075–1080.
  • C. Laberty-Robert, F. Ansart, C. Deloget, M. Gaudon and A. Rousset: ‘Dense yttria stabilized zirconia: sintering and microstructure’, Ceram. Int., 2003, 29, 151–158.
  • Q. Li, T. Xia, X. Liu, X. Ma, J. Meng and X. Cao: ‘Fast densification and electrical conductivity of yttria-stabilized zirconia nanoceramics’, Mater. Sci. Eng. B, 2007, 138, (1), 78–83.
  • A. Ghosh, A. Suri, B. Rao and T. Ramamohan: ‘Low-temperature sintering and mechanical property evaluation of nanocrystalline 8 mol% yttria fully stabilized zirconia’, J. Am. Ceram. Soc., 2007, 90, 2015–2023.
  • M. Mazaheri, A. Zahedi and M. Hejazi: ‘Processing of nanocrystalline 8 mol% yttria-stabilized zirconia by conventional, microwave-assisted and two-step sintering’, Mater. Sci. Eng. A, 2008, 492, 261–267.
  • M. Mazaheri, M. Valefi, Z. Razavi Hesabi and S. Sadrnezhaad: ‘Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process’, Ceram. Int., 2009, 35, 13–20.
  • Z. Razavi-Hesabi, M. Mazaheri and T. Ebadzadeh: ‘Enhanced electrical conductivity of ultrafine-grained 8Y2O3 stabilized ZrO2 produced by two-step sintering technique’, J. Alloys Compd., 2010, 494, 362–365.
  • P. Durán, J. Tartaj, J. Fernándes, M. Villegas and C. Moure: ‘Crystallisation and sintering behaviour of nanocrystalline Y-TZP powders obtained by seeding-assisted chemical coprecipitation’, Ceram. Int., 1999, 25, 125–135.
  • J. Reed: ‘Principles of ceramic processing’, 2nd edn; 1995, New York, Wiley.
  • H. Ferkel and R. Hellmig: ‘Effect of nanopowder deagglomeration on the densities of nanocrystalline ceramic green bodies and their sintering behavior’, Nanostruct. Mater., 1999, 11, 617–622.
  • O. Khasanov, E. Dvilis and V. Sokolov: ‘Compressibility of the structural and functional ceramic nanopowders’, J. Eur. Ceram. Soc., 2007, 27, 749–752.
  • J. Rufner, R. Castro, T. Holland and K. van Benthem: ‘Mechanical properties of individual MgAl2O4 agglomerates and their effects on densification’, Acta Mater., 2014, 69, 187–195.
  • D. Liu: ‘Adsorption, rheology, packing, and sintering of nanosize ceramic powders’, Ceram. Int., 1999, 25, 107–113.
  • S. Schwarz and O. Guillon: ‘Two step sintering of cubic yttria stabilized zirconia using field assisted sintering technique/spark plasma sintering’, J. Eur. Ceram. Soc., 2013, 33, 637–641.
  • A. Paul, B. Vaidhyanathan and J. Binner: ‘Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics’, J. Am. Ceram. Soc., 2011, 94, (7), 2146–2152.
  • J. Binner and B. Vaidhyanathan: ‘Processing of bulk nanostructured ceramics’, J. Eur. Ceram. Soc., 2008, 28, 1329–1339.
  • P. Pradhan and P. Kapur: ‘Effect of powder dispersion on sintering behavior and mechanical properties of nanostructured 3YSZ ceramics’, Ceram. Int., 2012, 38, 2835–2843.
  • D. Kim and C. Kim: ‘Entrapped gas effect in the fast firing of yttria-doped zirconia’, J. Am. Ceram. Soc., 1992, 75, (3), 716–718.
  • R. Kretser, S. Usher, P. Scales and D. Boger: ‘Rapid filtration measurement of dewatering design and optimization parameters’, AIChE J., 2001, 47, (8), 1758–1769.
  • S. Lee: ‘Sintering behaviour and mechanical properties of injection-molded zirconia powder’, Ceram. Int., 2004, 30, 579–584.
  • P. Yu, Q. Li, J. Fuh, T. Li and L. Lu: ‘Two-stage sintering of nanosized yttria stabilized zirconia process by powder injection molding’, J. Mater. Process. Technol., 2007, 192-193, 312–318.
  • G. Theunissen, A. Winnubst and A. Burggraaf: ‘Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics’, J. Eur. Ceram. Soc., 1993, 11, 315–324.
  • M. Boutz, R. Olde Scholtenhuis, A. Winnubst and A. Burggraaf: ‘A hydrothermal route for production of dense, nanostructured Y-TZP’, Mater. Res. Bull., 1994, 29, 31–40.
  • C. Sagel-Ransijn, A. Winnubst, A. Burggraaf and H. Verweij: ‘The influence of crystallization and washing medium on the characteristics of nanocrystalline Y-TZP’, J. Eur. Ceram. Soc., 1996, 16, 159–166.
  • C. Sagel-Ransijn, A. Winnubst, B. Kerkwijk, A. Burggraaf and H. Verweij: ‘Production of defect-poor nanostructured ceramics of yttria-zirconia’, J. Eur. Ceram. Soc., 1997, 17, 831–841.
  • W. Li, L. Gao and J. Guo: ‘Synthesis of yttria-stabilized zirconia nanoparticles by heating of alcohol-aqueous salt solutions’, Nanostruct. Mater., 1998, 10, (6), 1043–1049.
  • F. Boulc'h, E. Djurado, L. Dessemond and J. Fouletier: ‘Physico-chemical characterization of highly pure nanocrystalline doped TZP’, J. Eur. Ceram. Soc., 2001, 21, 1847–1850.
  • E. Djurado, F. Boulc'h, A. Pivkina, Y. Frolov, N. Landschoot and J. Schoonman: ‘Cold isostatic and explosive isodynamic compaction of Y-TZP nanoparticles’, Solid State Ionics, 2002, 154-155, 375–380.
  • F. Boulc'h and E. Djurado: ‘Structural changes of rare-earth-doped, nanostructured zirconia solid solution’, Solid State Ionics, 2003, 157, 335–340.
  • S. Tadokoro and E. Muccillo: ‘Synthesis and characterization of nanosized powders of yttria-doped zirconia’, J. Alloys Compd., 2002, 344, 186–189.
  • R. Benavente, M. Salvador, M. Alcázar and R. Moreno: ‘Dense nanostructured zirconia compacts obtained by colloidal filtration of binary mixtures’, Ceram. Int., 2012, 38, 2111–2117.
  • O. Vasylkiv, Y. Sakka and V. Skorokhod: ‘Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nanoceramics’, J. Am. Ceram. Soc., 2003, 86, (2), 299–304.
  • M. Harmer and R. Brook: ‘Fast firing – microstructural benefits’, J. Br. Ceram. Soc., 1981, 80, (5), 147–148.
  • D. García, D. Hotza and R. Janssen: ‘Building a sintering front through fast firing’, Int. J. Appl. Ceram. Technol., 2011, 8, 1486–1493.
  • N. Holmström: ‘Fast firing of triaxial porcelain’, in ‘A Collection of Papers Presented at the 1978, 1979, and 1980 Meetings of the Materials & Equipment/Whitewares’, (ed. W. Smothers., 780–787, Vol. 1, 2008, Hoboken, NJ, Wiley.
  • Koyo: ‘Conveyor furnaces’. 2014 [Online], available at: https://www.crystec.com/kllconve.htm (accessed 3 2015).
  • S. Landin and W. Schulze: ‘Rapid sintering of stoichiometric zinc-modified lead magnesium niobate’, J. Am. Ceram. Soc., 1990, 73, (4), 913–918.
  • Sirona: ‘inLab Labside Solutions’. 2014 [Online], available at: http://www.sirona.com/en/products/digital-dentistry/inlab-labside-solutions/?tab=248 (accessed 3 2015).
  • T. Possamai, R. Oba, V. Nicolau, D. Hotza and D. Garcia: ‘Numerical simulation of the fast firing of alumina in a box furnace’, J. Am. Ceram. Soc., 2012, 95, (12), 3750–3757.
  • M. Harmer, E. Roberts and R. Brook: ‘Rapid Sintering of pure and doped α-Al2O3’, Trans. J. Br. Ceram. Soc., 1979, 78, (1), 22–24.
  • D. García, J. Seidel, R. Janssen and N. Claussen: ‘Fast firing of alumina’, J. Eur. Ceram. Soc., 1995, 15, 935–938.
  • F. Lin, L. de Jonghe and M. Rahaman: ‘Initial coarsening and microstructural evolution of fast-fired and MgO-doped Al2O3’, J. Am. Ceram. Soc., 1997, 80, (11), 2891–2896.
  • G. Pereira, R. Castro, D. De Florio, E. Muccillo and D. Gouvea: ‘Densification and electrical conductivity of fast fired manganese-doped ceria ceramics’, Mater. Lett., 2005, 59, (10), 1195–1199.
  • A. Morell and A. Hermosin: ‘Fast sintering of soft Mn-Zn and Ni-Zn ferrite pot cores’, Am. Ceram. Soc. Bull., 1980, 59, (6), 626–629.
  • A. Dias: ‘Microstructural evolution of fast-fired nickel-zinc ferrites from hydrothermal nanopowders’, Mater. Res. Bull., 2000, 35, (9), 1439–1446.
  • W. Zhu, C. Wang and S. Akbar: ‘Fast sintering of hydrothermally synthesized BaTiO3 powders and their dielectric properties’, J. Mater. Sci., 1997, 32, 4303–4307.
  • A. Alles, R. Vanalstine and W. Schulze: ‘Dielectric properties and aging of fast-fired barium titanate’, Lat. Am. Appl. Res., 2005, 35, (1), 29–35.
  • B. Kim, J. Lee, J. Kim, H. Lee and J. Lee: ‘Densification of nanocrystalline ITO powders in fast firing: effect of specimen mass and sintering atmosphere’, Mater. Res. Bull., 2005, 40, 395–404.
  • M. Kassarjian, B. Fox and J. Biggers: ‘Fast-firing of a lead-iron niobate dielectric ceramic’, J. Am. Ceram. Soc., 1985, 68, (6), 140–141.
  • D. Saha, A. Sen and H. S. Maiti: ‘Fast firing of lead magnesium niobate at low temperature’, J. Mater. Res., 1996, 11, (4), 932–934.
  • A. Seal, S. Das, R. Mazumder and A. Sen: ‘Low-frequency dispersion in low-temperature fast-fired PZT’, J. Phys. D Appl. Phys., 2007, 40, 7560–7564.
  • C. Hung, C. Lai and F. Yen: ‘Size ratio induced yttrium aluminum garnet formation characteristics in nano-scaled Y2O3-Al2O3 powder systems via fast firing processes’, Mater. Chem. Phys., 2011, 129, (1–2), 534–539.
  • D. García, J. Wendorff, R. Janssen and N. Claussen: ‘Fast firing of reaction-bonded aluminium oxide RBAO composites’, J. Mater. Sci., 1995, 30, 5121–5124.
  • E. Volceanov, G. Aldica, A. Volceanov, D. Constantinescu and Ş. Motoc: ‘From conventional to fast sintering of zirconia toughened alumina nanocomposites’, in ‘Mechanical Properties and Performance of Engineering Ceramics and Composites IV’, (eds. D. Singh, W. Kriven and J. Salem., 91–102, 2009, Hoboken, NJ, Wiley.
  • E. Bernardo and G. Scarinci: ‘Fast sinter-crystallization of waste glasses’, Adv. Appl. Ceram., 2008, 107, 344–349.
  • E. Bernardo, G. Scarinci, E. Edme, U. Michon and N. Planty: ‘Fast sintered gehlenite glass-ceramics from plasma vitrified municipal solid waste incinerator fly ashes’, J. Am. Ceram. Soc., 2009, 92, 528–530.
  • C. Scott and J. Reed: ‘Effect of laundering and mllling on the sintering behavior of stabilized ZrO2 powders’, Am. Ceram. Soc. Bull., 1979, 58, (6), 587–590.
  • D. Kim and C. Kim: ‘Effect of heating rate on pore shrinkage in yttria-doped zirconia’, J. Am. Ceram. Soc., 1993, 76, (7), 1877–1888.
  • H. Qiu, L. Gao, H. Qiao, J. Guo and D. Yan: ‘Nanocrystalline zirconia powder processing through innovative wet-chemical methods’, Nanostruct. Mater., 1995, 6, 373–376.
  • D. Chen and M. Mayo: ‘Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3’, J. Am. Ceram. Soc., 1996, 79, 906–912.
  • Y. Lee, Y. M. M. Kim and D. Kim: ‘Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering’, J. Am. Ceram. Soc., 2003, 86, 1803–1805.
  • K. Bodisova and P. Sajgalik: ‘Two-stage sintering of alumina with submicrometer grain size’, J. Am. Ceram. Soc., 2007, 90, 330–332.
  • T. Karaki, K. Yan and M. Adachi: ‘Barium titanate piezoelectric ceramics manufactured by two-step sintering’, Jpn. J. Appl. Phys., 2007, 46, (10B), 7035–7038.
  • P. Durán, F. Capel, J. Tartaj and C. Moure: ‘A strategic two-stage low-temperature thermal processing leading to fully dense and fine grained doped ZnO varistors’, Adv. Mater., 2002, 14, (2), 137–141.
  • M. Mazaheri, A. Zahedi and S. Sadrnezhaad: ‘Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth’, J. Am. Ceram. Soc., 2008, 91, 56–63.
  • T. Zou, X. Wang, H. Wang, C. Zhong, L. Li and I. Chen: ‘Bulk dense fine-grain (1_x)BiScO3-XPbTiO3 ceramics with high piezoelectric coefficient’, Appl. Phys. Lett., 2008, 93, (192913), 1–3.
  • T. Zou, X. Wang, W. Zhao and L. Li: ‘Preparation and properties of fine-grain (1_x)BiScO3-XPbTiO3 ceramics by two-step sintering’, J. Am. Ceram. Soc., 2008, 91, (1), 121–126.
  • D. Wang, K. Zhu, H. Ji and J. Qiu: ‘Two-step sintering of the pure K0·5Na0·5NbO3 lead-free piezoceramics and its piezoelectric properties’, Ferroelectrics, 2009, 392, (1), 120–126.
  • J. Fang, X. Wang, Z. Tian, C. Zhong and L. Li: ‘Two-step sintering: an approach to broaden the sintering temperature range of alkaline niobate-based lead-free piezoceramics’, J. Am. Ceram. Soc., 2010, 93, (1), 3552–3555.
  • M. Lourenço, G. Cunto, F. Figueiredo and J. Frade: ‘Model of two-step sintering conditions for yttria-substituted zirconia powders’, Mater. Chem. Phys., 2011, 126, 262–271.
  • J. Chen, X. Huang and G. Qin: ‘Two-step sintering of nano-yttria stabilized tetragonal zirconia’, J. Chin. Ceram. Soc., 2012, 40, (3), 335–339.
  • Y. Xiong, J. Hu and Z. Shen: ‘Dynamic pore coalescence in nanoceramic consolidated by two-step sintering procedure’, J. Eur. Ceram. Soc., 2013, 33, (11), 2087–2092.
  • G. Suárez, Y. Sakka, T. Suzuki, T. Uchikoshi and E. Aglietti: ‘Effect of bead-milling treatment on the dispersion of tetragonal zirconia nanopowder and improvements of two-step sintering’, J. Ceram. Soc. Jpn., 2009, 117, 470–474.
  • M. Han, X. Tang, H. Yin and S. Peng: ‘Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs’, J. Power Sources, 2007, 165, 757–763.
  • O. Durá and M. López de la Torre: ‘X-ray diffraction line profile analysis of mechanically alloyed nanocrystalline YSZ’, J. Phys. D Appl. Phys., 2008, 41, 045408.
  • E. Muccillo and R. Muccillo: ‘Effect of processing methodology on microstructure and ionic conductivity of yttria-stabilized zirconia’, ECS Trans., 2010, 28, (11), 325–331.
  • M. Van De Graaf, J. Ter Maat and A. Burggraaf: ‘Microstructure and sintering kinetics of highly reactive ZrO2-Y2O3 ceramics’, J. Mater. Sci., 1985, 20, 1407–1418.
  • H. Hahn: ‘Unique features and properties of nanostructured materials’, Adv. Eng. Mater., 2003, 5, (5), 277–284.
  • W. Rhodes: ‘Agglomerate and particle size effects on sintering yttria-stabilized zirconia’, J. Am. Ceram. Soc., 1981, 64, (1), 19–22.
  • A. Lakshmanan (ed.): ‘in Sintering of ceramics: new emerging techniques’, 1329–1339; 2012, Rijeka, InTech.
  • A. Hynes, R. Doremus and R. Siegel: ‘Sintering and characterization of nanophase zinc oxide’, J. Am. Ceram. Soc., 2002, 85, (8), 1979–1987.
  • C. Kuo, Y. Shen, I. Hung and S. Wen: ‘Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process’, J. Alloys Compd., 2009, 472, 186–193.
  • K. Maca, V. Pouchly and P. Zalud: ‘Two-step sintering of oxide ceramics with various crystal structures’, J. Eur. Ceram. Soc., 2010, 30, 583–589.
  • M. Trunec, K. Castkova and P. Roupcova: ‘Effect of phase structure on sintering behavior of zirconia nanopowders’, J. Am. Ceram. Soc., 2013, 96, (12), 3720–3727.
  • J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, R. Kuzel, G. Brauer and W. Anwand: ‘Defect studies of nanocrystalline zirconia powders and sintered ceramics’, Phys. Rev. B, 2010, 81, 024116.
  • Y. Yagi, S. Hirano, Y. Ujihira and M. Miyayama: ‘Analysis of the sintering process of 2 mol % yttria-doped zirconia by positron annihilation lifetime measurements’, J. Mater. Sci. Lett., 1999, 18, 205–207.
  • I. Prochazka, J. Cizek, O. Melikhova and J. Kuriplach: ‘Defect behaviour in yttria-stabilised zirconia nanomaterials studied by positron annihilation techniques’, Defect Diffus. Forum, 2012, 331, 181–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.