2,516
Views
127
CrossRef citations to date
0
Altmetric
FULL CRITICAL REVIEW

Architectured materials in engineering and biology: fabrication, structure, mechanics and performance

References

  • M. F. Ashby: ‘Hybrids to fill holes in material property space’, Philos. Mag., 2005, 85, (26–27), 3235–3257.
  • R. O. Ritchie: ‘The conflicts between strength and toughness’, Nat. Mater., 2011, 10, (11), 817–22.
  • N. A. Fleck, V. S. Deshpande and M. F. Ashby: ‘Micro-architectured materials: past, present and future’, Proc. R. Soci. A Math. Phys. Eng. Sci., 2010, 466, (2121), 2495–2516.
  • O. Bouaziz, Y. Brechet and J. D. Embury: ‘Heterogeneous and architectured materials: A possible strategy for design of structural materials’, Adv. Eng. Mater., 2008, 10, (1–2), 24–36.
  • A. V. Dyskin, Y. Estrin, E. Pasternak, H. C. Khor and A. J. Kanel-Belov: ‘Fracture resistant structures based on topological inter-locking with non-planar contacts’, Adv. Eng. Mater., 2003, 5, (3), 116–119.
  • M. Ostoja-Starzewski: ‘Material spatial randomness: From statistical to representative volume element’, Probab. Eng. Eng. Mech., 2006, 21, (2), 112–132.
  • M. E. Kassner, S. Nemat-Nasser, Z. G. Suo, G. Bao, J. C. Barbour, L. C. Brinson, H. Espinosa, H. J. Gao, S. Granick, P. Gumbsch, K. S. Kim, W. Knauss, L. Kubin, J. Langer, B. C. Larson, L. Mahadevan, A. Majumdar, S. Torquato and F. van Swol: ‘New directions in mechanics’, Mech. Mater., 2005, 37, (2–3), 231–259.
  • R. Lakes: ‘Advances in negative poisson's ratio materials’, Adv. Mater., 1993, 5, (4), 293–296.
  • H. N. G. Wadley: ‘Cellular metals manufacturing’, Adv. Eng. Mater., 2002, 4, (10), 726–733.
  • S. K. Moon, Y. E. Tan, J. Hwang and Y. J. Yoon: ‘Application of 3D Printing Technology for Designing Light-weight Unmanned Aerial Vehicle Wing Structures’, Int. J. Precis. Eng. Manuf. Green Technol., 2014, 1, (3), 223–228.
  • B. G. Compton and J. A. Lewis: ‘3D-Printing of Lightweight Cellular Composites’, Adv. Mater., 2014, 26, (34), 5930–+.
  • G. Minke: ‘Construction manual for earthquake-resistant houses built of earth’, 2001, London, German Appropriate Technology Exchange.
  • F. Fleury: ‘Evaluation of the perpendicular flat vault inventor's intuitions through large scale instrumented testing’, in ‘Third International Congress on Construction History Cottbus, Germany’, (ed. K. E. Kurrer, W. Lorenz and V. Wetzk), 611–618, 2009; NEUNPLUS1.
  • M. Glickman: ‘The G-block system of vertically interlocking paving’, ‘Second International Conference on Concrete Block Paving, Delft, Netherlands’, p 345–348; 1984.
  • A. V. Dyskin, Y. Estrin, E. Pasternak, H. C. Khor and A. J. Kanel-Belov: ‘The principle of topological interlocking in extraterrestrial construction’, Acta Astronautica, 2005, 57, (1), 10–21.
  • W. J. Clegg, K. Kendall, N. M. Alford, T. W. Button and J. D. Birchall: ‘A Simple Way to Make Tough Ceramics’, Nature, 1990, 347, (6292), 455–457.
  • B. R. Lawn: ‘Fracture of Brittle Solids’, 2nd Edition ed. 1993, New York, Cambridge University Press.
  • J. N. Baucom, J. P. Thomas, W. R. PogueIii, M. A. Siddiq Qidwai: ‘Tiled composite laminates’, J. Comp. Mater., 2010, 44, (26), 3115–3132.
  • A. Y. Dyskin, Y. Estrin, A. J. Kanel-Belov and E. Pasternak: ‘Topological interlocking of platonic solids: a way to new materials and structures’, Philos. Mag. Lett., 2003, 83, (3), 197–203.
  • A. V. Dyskin, Y. Estrin, A. J. Kanel-Belov and E. Pasternak: ‘A new principle in design of composite materials: reinforcement by inter-locked elements’, Comp. Sci. Technol., 2003, 63, (3–4), 483–491.
  • S. Khandelwal, T. Siegmund, R. J. Cipra and J. S. Bolton: ‘Transverse loading of cellular topologically interlocked materials’, Int. J. Solids Struct., 2012, 49, (18), 2394–2403.
  • A. V. Dyskin, Y. Estrin, A. J. Kanel-Belov and E. Pasternak: ‘A new concept in design of materials and structures: Assemblies of inter-locked tetrahedron-shaped elements’, Scr. Mater., 2001, 44, (12), 2689–2694.
  • A. Autruffe, F. Pelloux, C. Brugger, P. Duval, Y. Brechet and M. Fivel: ‘Indentation behaviour of interlocked structures made of ice: Influence of the friction coefficient’, Adv. Eng. Mater., 2007, 9, (8), 664–666.
  • A. Mather, R. J. Cipra and T. Siegmund: ‘Structural Integrity During Remanufacture of a Topologically Interlocked Material’, Int. J. Struct. Integrity, 2011, 3, 61–78.
  • T. Krause, A. Molotnikov, M. Carlesso, J. Rente, K. Rezwan, Y. Estrin and D. Koch: ‘Mechanical Properties of Topologically Interlocked Structures with Elements Produced by Freeze Gelation of Ceramic Slurries’, Adv. Eng. Mater., 2012, 14, (3), 335–341.
  • S. Schaare, A. V. Dyskin, Y. Estrin, S. Arndt, E. Pasternak and A. Kanel-Belov: ‘Point loading of assemblies of interlocked cube-shaped elements’, Inter. J. Eng. Sci., 2008, 46, (12), 1228–1238.
  • Y. Feng, T. Siegmund, E. Habtour and J. Riddick: ‘Impact mechanics of topologically interlocked material assemblies’, Inter. J. Impact Eng., 2015, 75, 140–149.
  • S. Schaare, W. Riehemann and Y. Estrin: ‘Damping properties of an assembly of topologically interlocked cubes’, Mater. Sci. Eng. A Structural Mater. Prop. Micro. Proc., 2009, 52, (1–22), 380–383.
  • M. Carlesso, R. Giacomelli, T. Krause, A. Molotnikov, D. Koch, S. Kroll, K. Tushtev, Y. Estrin and K. Rezwan: ‘Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks’, J. Eur. Ceram. Soc., 2013, 33, (13–14), 2549–2558.
  • M. Brocato and L. Mondardini: ‘A new type of stone dome based on Abeille's bond’, Int. J. Solids Struct., 2012, 49, (13), 1786–1801.
  • M. Dugue, M. Fivel, Y. Brechet and R. Dendievel: ‘Indentation of interlocked assemblies: 3D discrete simulations and experiments’, Comput. Mater. Sci., 2013, 79, 591–598.
  • S. Khandelwal, T. Siegmund, R. J. Cipra and J. S. Bolton: ‘Scaling of the Elastic Behavior of Two-Dimensional Topologically Interlocked Materials Under Transverse Loading’, J. Appl. Mech. Trans. ASME, 2014, 81, (3), 031011–p1–9.
  • M. Sarikaya and I. A. Aksay (eds): ‘Biomimetics, Design and Processing of Materials’ in ‘Polymers and complex materials’; 1995, Woodbury, NY, AIP.
  • G. Mayer: ‘Rigid biological systems as models for synthetic composites’, Sci., 2005, 310, (5751), 1144–1147.
  • R. Ballarini, R. Kayacan, F. J. Ulm, T. Belytschko and A. H. Heuer: ‘Biological structures mitigate catastrophic fracture through various strategies’, Inter. J. Fracture, 2005, 135, (1–4), 187–197.
  • F. Barthelat: ‘Biomimetics for next generation materials’, Philos. Trans. A Math. Phys. Eng. Sci., 2007, 365, 2907–2919.
  • H. D. Espinosa, J. E. Rim, F. Barthelat and M. J. Buehler: ‘Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials’, Prog. Mater. Sci., 2009, 54, (8), 1059–1100.
  • U. G. K. Wegst, H. Bai, E. Saiz, A. P. Tomsia and R. O. Ritchie: ‘Bioinspired structural materials’, Nat. Mater., 2015, 14, (1), 23–36.
  • J. W. C. Dunlop and Y. J. M. Brechet: ‘Architectured Structural Materials: A Parallel Between Nature and Engineering’, in ‘Architecture Multifunctional Materials: Materials Research Society’ (Y. J. M. Brechet et al.), 15–25; 2009.
  • S. Weiner and H. D. Wagner: ‘The material bone: Structure mechanical function relations’, Ann. Rev. Mater. Sci., 1998, 28, 271–298.
  • J. Y. Rho, L. Kuhn-Spearing and P. Zioupos: ‘Mechanical properties and the hierarchical structure of bone’, Med. Eng. Phys., 1998, 20, (2), 92–102.
  • F. Vollrath and D. P. Knight: ‘Liquid crystalline spinning of spider silk’, Nature, 2001, 410, (6828), 541–548.
  • M. J. Buehler: ‘Nature designs tough collagen: Explaining the nanostructure of collagen fibrils’, Proc. Natl. Acad. Sci. U S A, 2006, 103, (33), 12285–12290.
  • J. P. O'Brien, S. R. Fahnestock, Y. Termonia and K. C. H. Gardner: ‘Nylons from nature: Synthetic analogs to spider silk’, Adv. Mater., 1998, 10, (15), 1185–+.
  • L. H. He and M. V. Swain: ‘Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics’, J. Mech. Behav. Biomed. Mater., 2008, 1, (1), 18–29.
  • S. Kamat, X. Su, R. Ballarini and A. H. Heuer: ‘Structural basis for the fracture toughness of the shell of the conch Strombus gigas’, Nature, 2000, 405, (6790), 1036–1040.
  • R. O. Ritchie, M. J. Buehler and P. Hansma: ‘Plasticity and toughness in bone’, Phys. Today, 2009, 62, (6), 41–47.
  • D. Bajaj, S. Park, G. D. Quinn and D. Arola: ‘Fracture Processes and Mechanisms of Crack Growth Resistance in Human Enamel’, JOM, 2010, 62, (7), 76–82.
  • F. Barthelat and R. Rabiei: ‘Toughness amplification in natural composites’, J. Mech. Phys. Solids, 2011, 59, (4), 829–840.
  • B. L. Smith, T. E. Schaeffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse and P. K. Hansma: ‘Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites’, Nature (London), 1999, 399, (6738), 761–763.
  • F. Barthelat, H. Tang, P. D. Zavattieri, C. M. Li and H. D. Espinosa: ‘On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure’, J. Mech. Phys. Solids, 2007, 55, (2), 225–444.
  • P. Fratzl and R. Weinkamer: ‘Nature's hierarchical materials’, Prog. Mater. Sci., 2007, 52, (8), 1263–1334.
  • D. Sen and M. Buehler: ‘Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks’, Sci. Rep., 2011, 1, (35), 1–9.
  • Z. Zhang, Y.-W. Zhang and H. Gao: ‘On optimal hierarchy of load-bearing biological materials’, Proc. R. Soc. B Biol. Sci., 2011, 278, (1705), 519–525.
  • H. J. Gao, B. H. Ji, I. L. Jager, E. Arzt and P. Fratzl: ‘Materials become insensitive to flaws at nanoscale: Lessons from nature’, Proc. Natl. Acad. Sci. U S A, 2003, 100, (10), 5597–5600.
  • A. Nova, S. Keten, N. M. Pugno, A. Redaelli and M. J. Buehler: ‘Molecular and Nanostructural Mechanisms of Deformation, Strength and Toughness of Spider Silk Fibrils’, Nano Lett., 2010, 10, (7), 2626–2634.
  • R. Sinko, S. Mishra, L. Ruiz, N. Brandis and S. Keten: ‘Dimensions of Biological Cellulose Nanocrystals Maximize Fracture Strength’, ACS Macro. Lett., 2014, 3, (1), 64–69.
  • A. H. Barber, D. Lu and N. M. Pugno: ‘Extreme strength observed in limpet teeth’, J. R. Soc. Interface, 2015, 12, (105).
  • J. Aizenberg, V. C. Sundar, A. D. Yablon, J. C. Weaver and G. Chen: ‘Biological glass fibers: Correlation between optical and structural properties’, Proc. Natl. Acad. Sci. U S A., 2004, 101, (10), 3358–3363.
  • J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse and P. Fratzl: ‘Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale’, Sci., 2005, 309, (5732), 275–278.
  • C. Levi, J. L. Barton, C. Guillemet, E. Lebras and P. Lehuede: ‘A Remarkably Strong Natural Glassy ROD - The Anchoring Spicule of the Monorhaphis Sponge’, J. Mater. Sci. Lett., 1989, 8, (3), 337–339.
  • A. Miserez, J. C. Weaver, P. J. Thurner, J. Aizenberg, Y. Dauphin, P. Fratzl, D. E. Morse and F. W. Zok: ‘Effects of laminate architecture on fracture resistance of sponge biosilica: Lessons from nature’, Adv. Funct. Mater., 2008, 18, (8), 1241–1248.
  • M. Johnson, S. L. Walter, B. D. Flinn and G. Mayer: ‘Influence of moisture on the mechanical behavior of a natural composite’, Acta Biomater., 2010, 6, (6), 2181–2188.
  • D. Bajaj and D. Arola: ‘Role of prism decussation on fatigue crack growth and fracture of human enamel’, Acta Biomater., 2009, 5, (8), 3045–3056.
  • M. Yahyazadehfar, J. Ivancik, H. Majd, B. An, D. Zhang and D. Arola: ‘On the mechanics of fatigue and fracture in teeth’, Appl. Mech. Rev., 2014, 66, (3).
  • I. Scheider, T. Xiao, E. Yilmaz, G. A. Schneider, N. Huber and S. Bargmann: ‘Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure’, Acta Biomater., 2015, 15, 244–253.
  • V. Imbeni, J. J. Kruzic, G. W. Marshall, S. J. Marshall and R. O. Ritchie: ‘The dentin-enamel junction and the fracture of human teeth’, Nat. Mater., 2005, 4, (3), 229–232.
  • M. Mirkhalaf, A. K. Dastjerdi and F. Barthelat: ‘Overcoming the brittleness of glass through bio-inspiration and micro-architecture’, Nat. Commun., 2014, 5.
  • A. P. Jackson, J. F. V. Vincent, R. M. Turner: ‘The Mechanical Design of Nacre’, Proc. R. Soc. London B Biol. Sci., 1988, 234, (1277), 415–440.
  • M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain and X. Bourrat: ‘Multiscale structure of sheet nacre’, Biomaterials, 2005, 26, (31), 6254–6262.
  • R. Z. Wang, Z. Suo, A. G. Evans, N. Yao and I. A. Aksay: ‘Deformation mechanisms in nacre’, J. Mater. Res., 2001, 16, 2485–2493.
  • F. Song and Y. L. Bai: ‘Effects of nanostructures on the fracture strength of the interfaces in nacre’, J. Mater. Res., 2003, 18, 1741–1744.
  • J. D. Currey and J. D. Taylor: ‘The Mechanical Behavior of Some Molluscan Hard Tissues’, J. Zool. (London), 1974, 173, (3), 395–406.
  • L. T. KuhnSpearing, H. Kessler, E. Chateau, R. Ballarini, A. H. Heuer and S. M. Spearing: ‘Fracture mechanisms of the Strombus gigas conch shell: Implications for the design of brittle laminates’, J. Mater. Sci., 1996, 31, (24), 6583–6594.
  • R. F. Ker: ‘Mechanics of tendon, from an engineering perspective’, Int. J. Fatigue, 2007, 29, (6), 1001–1009.
  • T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh and S. Mann: ‘Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major’, J. Struct. Biol., 2003, 142, (3), 327–333.
  • D. Zhu, C. F. Ortega, R. Motamedi, L. Szewciw, F. Vernerey and F. Barthelat: ‘Structure and Mechanical Performance of a “Modern” Fish Scale’, Adv. Eng. Mater., 2012, 14, (4), B185–B194.
  • D. Raabe, C. Sachs and P. Romano: ‘The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material’, Acta. Materialia., 2005, 53, (15), 4281–4292.
  • E. A. Zimmermann, B. Gludovatz, E. Schaible, N. K. N. Dave, W. Yang, M. A. Meyers and R. O. Ritchie: ‘Mechanical adaptability of the Bouligand-type structure in natural dermal armour’, Nat. Comm., 2013, 4.
  • J. C. Weaver, G. W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W. J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi and D. Kisailus: ‘The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer’, Sci., 2012, 336, (6086), 1275–1280.
  • S. Nikolov, M. Petrov, L. Lymperakis, M. Friak, C. Sachs, H.-O. Fabritius, D. Raabe and J. Neugebauer: ‘Revealing the Design Principles of High-Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle’, Adv. Mater., 2010, 22, (4), 519–+.
  • I. Burgert and P. Fratzl: ‘Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls’, Integr. Compar. Biol., 2009, 49, (1), 69–79.
  • P. J. Thurner, C. G. Chen, S. Ionova-Martin, L. Sun, A. Harman, A. Porter, J. W. AgerIII, R. O. Ritchie and T. Alliston: ‘Osteopontin deficiency increases bone fragility but preserves bone mass’, Bone, 2010, 46, (6), 1564–1573.
  • J. Keckes, I. Burgert, K. Frühmann, M. Müller, K. Kölln, M. Hamilton, M. Burghammer, S. V. Roth, S. Stanzl-Tschegg and P. Fratzl: ‘Cell-wall recovery after irreversible deformation of wood’, Nat. Mater., 2003, 2, (12), 810–814.
  • H. Qing and L. Mishnaevsky: ‘3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers’, Mech. Mater., 2009, 41, (9), 1034–1049.
  • H. S. Gupta, W. Wagermaier, G. A. Zickler, D. R. B. Aroush, S. S. Funari, P. Roschger, H. D. Wagner and P. Fratzl: ‘Nanoscale deformation mechanisms in bone’, Nano Lett., 2005, 5, (10), 2108–2111.
  • H. J. Gao: ‘Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials’, Int. J. Fract., 2006, 138, (1–4), 101–137.
  • F. Barthelat and M. Mirkhalaf: ‘The quest for stiff, strong and tough hybrid materials: an exhaustive exploration’, J. R. Soc. Interface, 2013, 10, (89), 1–9.
  • S. Krauss, E. Monsonego-Ornan, E. Zelzer, P. Fratzl and R. Shahar: ‘Mechanical Function of a Complex Three-Dimensional Suture Joining the Bony Elements in the Shell of the Red-Eared Slider Turtle’, Adv. Mater., 2009, 21, (4), 407–+.
  • G. E. Budd: ‘Why are arthropods segmented?’, Evol. Dev., 2001, 3, (5), 332–342.
  • F. J. Vernerey and F. Barthelat: ‘Skin and scales of teleost fish: Simple structure but high performance and multiple functions’, J. Mech. Phys. Solids, 2014, 68, 66–76.
  • W. Yang, I. H. Chen, B. Gludovatz, E. A. Zimmermann, R. O. Ritchie and M. A. Meyers: ‘Natural Flexible Dermal Armor’, Adv. Mater., 2013, 25, (1), 31–48.
  • M. A. Meyers, P. Y. Chen, A. Y. M. Lin and Y. Seki: ‘Biological materials: Structure and mechanical properties’, Prog. Mater. Sci., 2008, 53, 1–206.
  • A. Berman, L. Addadi and S. Weiner: ‘Interactions of Sea-Urchin Skeleton Macromolecules with Growing Calcite Crystals - a Study of Intracrystalline Proteins’, Nature, 1988, 331, (6156), 546–548.
  • F. Barthelat, C. M. Li, C. Comi and H. D. Espinosa: ‘Mechanical properties of nacre constituents and their impact on mechanical performance’, J. Mater. Res., 2006, 21, (8), 1977–1986.
  • R. Raj and M. F. Ashby: ‘Grain boundary sliding and diffusional creep’, Metal. Trans., 1971, 2, (4), 1113.
  • P. Fratzl, I. Burgert and H. S. Gupta: ‘On the role of interface polymers for the mechanics of natural polymeric composites’, Phys. Chem Chem. Phys., 2004, 6, (24), 5575–5579.
  • J. W. C. Dunlop, R. Weinkamer and P. Fratzl: ‘Artful interfaces within biological materials’, Mater. Today, 2011, 14, (3), 70–78.
  • B. L. Smith, T. E. Schäffer, M. Vlani, J. B. Thompson, N. A. Frederick, J. Klndt, A. Belcher, G. D. Stuckyll, D. E. Morse and P. K. Hansma: ‘Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites’, Nature, 1999, 399, (6738), 761–763.
  • G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni, G. A. G. Cidade, G. D. Stucky, D. E. Morse and P. K. Hansma: ‘Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture’, Nature Mater., 2005, 4, (8), 612–616.
  • Y. Zhang, H. Yao, C. Ortiz, J. Xu and M. Dao: ‘Bio-inspired interfacial strengthening strategy through geometrically interlocking designs’, J. Mech. Behav. Biomed. Mater., 2012, 15, 70–77.
  • M. I. Lopez, P. E. M. Martinez and M. A. Meyers: ‘Organic inter-lamellar layers, mesolayers and mineral nanobridges: Contribution to strength in abalone (Haliotis rufescence) nacre’, Acta. Biomater., 2014, 10, (5), 2056–2064.
  • Y. Li, C. Ortiz and M. C. Boyce: ‘Stiffness and strength of suture joints in nature’, Phys. Rev. E, 2011, 84, (6).
  • R. K. Chintapalli, S. Breton, A. K. Dastjerdi and F. Barthelat: ‘Strain rate hardening: A hidden but critical mechanism for biological composites?’, Acta Biomater., 2014, 10, (12), 5064–5073.
  • J. Cook, C. C. Evans, J. E. Gordon and D. M. Marsh: ‘Mechanism for control of crack propagation in all-brittle systems’, Proc. R. Soc. Lond. A Math. Phys. Sci., 1964, 282, (1390), 508.
  • T. S. Cook and F. Erdogan: ‘Stresses in bonded materials with a crack perpendicular to interface’, Int. J. Eng. Sci., 1972, 10, (8), 677–999.
  • M. Y. He and J. W. Hutchinson: ‘Crack deflection at an interface between dissimilar elastic materials’, Int. J. Solids and Struct., 1989, 25, (9), 1053–1067.
  • M. Y. He, A. Bartlett, A. G. Evans and J. W. Hutchinson: ‘Kinking of a crack out of an interface – role of inplane stress’, J. Am. Ceram. Soc., 1991, 74, (4), 767–771.
  • D. Kovar, M. D. Thouless and J. W. Halloran: ‘Crack deflection and propagation in layered silicon nitride boron nitride ceramics’, J. Am. Ceram. Soc., 1998, 81, (4), 1004–1012.
  • K. S. Chan, M. Y. He and J. W. Hutchinson: ‘Cracking and stress redistribution in ceramic layered composites’, Mater. Sci. Eng.C, 1993, 167, (1–2), 57–64.
  • F. Barthelat, A. K. Dastjerdi and R. Rabiei: ‘An improved failure criterion for biological and engineered staggered composites’, J. R. Soc. Interface, 2013, 10, (79).
  • S. A. Wainwright, W. D. Biggs, J. D. Currey and J. M. Gosline: ‘Mechanical Design in Organisms’, 1976, Princeton, Princeton University Press.
  • M. Sarikaya: ‘An Introduction to Biomimetics - a Structural Viewpoint’, Microsc. Res. Techniq., 1994, 27, (5), 360–375.
  • J. F. V. Vincent: ‘Biomimetic materials’, J. Mater. Res., 2008, 23, (12), 3140–3147.
  • I. A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, and S. M. Gruner: ‘Biomimetic pathways for assembling inorganic thin films’, Science, 1996, 273, (5277), 892–898.
  • N. Almqvist, N. H. Thomson, B. L. Smith, G. D. Stucky, D. E. Morse and P. K. Hansma: ‘Methods for fabricating and characterizing a new generation of biomimetic materials’, Mater. Sci. Eng. C, 1999, 7, (1), 37–43.
  • Z. Y. Tang, N. A. Kotov, S. Magonov and B. Ozturk: ‘Nanostructured artificial nacre’, Nat. Mater., 2003, 2, (6), U413–U418.
  • L. J. Bonderer, A. R. Studart and L. J. Gauckler: ‘Bioinspired design and assembly of platelet reinforced polymer films’, Sci., 2008, 319, (5866), 1069–1073.
  • S. Deville, E. Saiz, R. K. Nalla and A. P. Tomsia: ‘Freezing as a path to build complex composites’, Sci., 2006, 311, (5760), 515–518.
  • F. Bouville, E. Maire, S. Meille, B. Van de Moortele, A. J. Stevenson and S. Deville: ‘Strong, tough and stiff bioinspired ceramics from brittle constituents’, Nat. Mater., 2014, 13, (5), 508–514.
  • R. M. Erb, R. Libanori, N. Rothfuchs and A. R. Studart: ‘Composites Reinforced in Three Dimensions by Using Low Magnetic Fields’, Sci., 2012, 335, 199–204.
  • S. Mann: ‘The chemistry of form’, Angew. Chem. Int. Ed., 2000, 39, (19), 3393–3406.
  • M. E. Launey and R. O. Ritchie: ‘On the Fracture Toughness of Advanced Materials’, Adv. Mater., 2009, 21, (20), 2103–2110.
  • A. G. Evans: ‘Perspective on the development of high-toughness ceramics’, J. Am. Ceram. Soc., 1990, 73, (2), 187–206.
  • Y. Estrin, A. V. Dyskin and E. Pasternak: ‘Topological interlocking as a material design concept’, Mater. Sci. Eng. C-Mater. Biol. Appl., 2011, 31, (6), 1189–1194.
  • G. Mayer: ‘New classes of tough composite materials - Lessons from natural rigid biological systems’, Mater. Sci. Eng. C, 2006, 26, (8), 1261–1268.
  • K. Livanov, H. Jelitto, B. Bar-On, K. Schulte, G. A. Schneider and D. H. Wagner: ‘Tough Alumina/Polymer Layered Composites with High Ceramic Content’, J. Am. Ceram. Soc., 2015, 98, (4), 1285–1291.
  • F. Barthelat and D. J. Zhu: ‘A novel biomimetic material duplicating the structure and mechanics of natural nacre’, J. Mater. Res., 2011, 26, (10), 1203–1215.
  • G. Karambelas, S. Santhanam and Z. N. Wing: ‘Strombus gigas. inspired biomimetic ceramic composites via SHELL-Sequential Hierarchical Engineered Layer Lamination’, Ceram. Int., 2013, 39, (2), 1315–1325.
  • J. Stampfl, M. M. Seyr, M. H. Luxner, H. E. Pettermann, A. Woesz and P. Fratzl: ‘Regular, low density cellular structures - rapid prototyping, numerical simulation, mechanical testing’, in ‘Biological and bioinspired materials and devices’, (ed. J. Aizenberg et al.), 109–114; 2004, Warrendale, Materials Research Society.
  • L. S. Dimas, G. H. Bratzel, I. Eylon and M. J. Buehler: ‘Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing’, Adv. Func. Mater., 2013, 23, (36), 4629–4638.
  • H. D. Espinosa, A. L. Juster, F. J. Latourte, O. Y. Loh, D. Gregoire and P. D. Zavattieri: ‘Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials’, Nat. Comm., 2011, 2.
  • E. Lin, Y. N. Li, J. C. Weaver, C. Ortiz and M. C. Boyce: ‘Tunability and enhancement of mechanical behavior with additively manufactured bio-inspired hierarchical suture interfaces’, J. Mater. Res., 2014, 29, (17), 1867–1875.
  • L. Chen, R. Ballarini, H. Kahn and A. H. Heuer: ‘Bioinspired micro-composite structure’, J. Mater. Res., 2007, 22, (1), 124–131.
  • O. Bouaziz: ‘Geometrically induced strain hardening’, Scr. Mater., 2013, 68, (1), 28–30.
  • S. M. M. Valashani and F. Barthelat: ‘A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre’, Bioinsp. Biomim., 2015, 10.
  • M. P. Rao, A. J. Sanchez-Herencia, G. E. Beltz, R. M. McMeeking and F. F. Lange: ‘Laminar ceramics that exhibit a threshold strength’, Science, 1999, 286, (5437), 102–105.
  • B. Pokroy, J. P. Quintana, E. N. Caspi, A. Berner and E. Zolotoyabko: ‘Anisotropic lattice distortions in biogenic aragonite’, Nat. Mater., 2004, 3, (12), 900–902.
  • P. Fratzl, H. S. Gupta, F. D. Fischer and O. Kolednik: ‘Hindered crack propagation in materials with periodically varying Young's modulus - Lessons from biological materials’, Adv. Mater., 2007, 19, (18), 2657.
  • J. H. Conway and S. Torquato: ‘Packing, tiling, and covering with tetrahedra’, Proc. Natl. Acad. Sci. U S A, 2006, 103, (28), 10612–10617.
  • P. F. Damasceno, M. Engel and S. C. Glotzer: ‘Predictive Self-Assembly of Polyhedra into Complex Structures’, Science, 2012, 337, (6093), 453–457.
  • A. J. Kanel-Belov, A. V. Dyskin, Y. Estrin, E. Pasternak and I. A. Ivanov-Pogodaev: ‘Interlocking of convex polyhedral: Towards a geometric theory of fragmented solids’, Moscow Math. J, 2010, 10, (2), 337–342.
  • S. Torquato and Y. Jiao: ‘Dense packings of the Platonic and Archimedean solids (vol 460, pg 876, 2009)’, Nature, 2010, 463, (7284).
  • P. Song, C.-W. Fu and D. Cohen-Or: ‘Recursive Interlocking Puzzles’, ACM Trans. Graphics, 2012, 31, (6).
  • M. Ashby: ‘Designing architectured materials’, Scr. Mater., 2013, 68, (1), 4–7.
  • Y. Brechet and J. D. Embury: ‘Architectured materials: Expanding materials space’, Scr. Mater., 2013, 68, (1), 1–3.
  • S. Torquato: ‘Optimal Design of Heterogeneous Materials’, in ‘Annual review of materials research’, (ed. D. R. Clarkeet al. ),Vol. 40, 101–129, 2010.
  • H. Wargnier, F. X. Kromm, M. Danis and Y. Brechet: ‘Proposal for a multi-material design procedure’, Mater. Des., 2014, 56, 44–49.
  • R. Kicinger, T. Arciszewski and K. De Jong: ‘Evolutionary computation and structural design: A survey of the state-of-the-art’, Comput Struct., 2005, 83, (23–24), 1943–1978.
  • P. Block, T. Ciblac and J. Ochsendorf: ‘Real-time limit analysis of vaulted masonry buildings’, Comput Struct., 2006, 84, (29–30), 1841–1852.
  • C. M. Andres and N. A. Kotov: ‘Inkjet deposition of layer-by-layer assembled films’, J. American Chem. Soc., 2010, 132, (41), 14496–14502.
  • J. A. Lewis: ‘Direct ink writing of 3D functional materials’, Adv. Func. Mater., 2006, 16, (17), 2193–2204.
  • M. Mott, J. H. Song and J. R. G. Evans: ‘Microengineering of ceramics by direct ink-Jet printing’, J. Am. Ceram. Soc., 1999, 82, (7), 1653–1658.
  • Q. Fu, E. Saiz and A. P. Tomsia: ‘Bioinspired Strong and Highly Porous Glass Scaffolds’, Adv. Funct. Mater., 2011, 21, (6), 1058–1063.
  • S. I. Stupp, V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser and A. Amstutz: ‘Supramolecular materials: Self-organized nanostructures’, Science, 1997, 276, (5311), 384–389.
  • M. Rycenga, J. M. McLellan and Y. Xia: ‘Controlling the assembly of silver nanocubes through selective functionalization of their faces’, Adv. Mater., 2008, 20, (12), 2416.
  • T. D. Clark, J. Tien, D. C. Duffy, K. E. Paul and G. M. Whitesides: ‘Self-assembly of 10-µm-sized objects into ordered three-dimensional arrays’, J. Am. Chem. Soc., 2001, 123, (31), 7677–7682.
  • J. G. Fernandez and A. Khademhosseini: ‘Micro-Masonry: Construction of 3D Structures by Microscale Self-Assembly’, Adv. Mater., 2010, 22, (23), 2538–2541.
  • J. S. Randhawa, L. N. Kanu, G. Singh and D. H. Gracias: ‘Importance of Surface Patterns for Defect Mitigation in Three-Dimensional Self-Assembly’, Langmuir, 2010, 26, (15), 12534–12539.
  • S. M. M. Valashani, C. J. Barrett and F. Barthelat: ‘Self-assembly of microscopic tablets within polymeric thin films: a possible pathway towards new hybrid materials’, RSC Adv., 2015, 5, (7), 4780–4787.
  • C. M. Soukoulis and M. Wegener: ‘Past achievements and future challenges in the development of three-dimensional photonic meta-materials’, Nat. Photonics, 2011, 5, (9), 523–530.
  • R. Lakes: ‘Materials with structural hierarchy’, Nature, 1993, 361, (6412), 511–515.
  • J. D. Hiller, J. Miller and H. Lipson: ‘Microbricks for Three-Dimensional Reconfigurable Modular Microsystems’, J. Microelectromech. Sys., 2011, 20, (5), 1089–1097.
  • K. R. Lind, T. Sizmur, S. Benomar, A. Miller and L. Cademartiri: ‘LEGO (R) Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants’, Plos One, 2014, 9, (6), e100867.
  • P. Bollen, N. Quievy, I. Huynen, C. Bailly, C. Detrembleur, J. M. Thomassin, and T. Pardoen: ‘Multifunctional architectured materials for electromagnetic absorption’, Scr. Mater., 2013, 68, (1), 50–54.
  • S. A. Morin, Y. Shevchenko, J. Lessing, S. W. Kwok, R. F. Shepherd, A. A. Stokes and G. M. Whitesides: ‘Using “Click-e-Bricks" to Make 3D Elastomeric Structures’, Adv. Mater., 2014, 26, (34), 5991.
  • M. Carlesso, A. Molotnikov, T. Krause, K. Tushtev, S. Kroll, K. Rezwan and Y. Estrin: ‘Enhancement of sound absorption properties using topologically interlocked elements’, Scr. Mater., 2012, 66, (7), 483–486.
  • E. Bafekrpour, A. Molotnikov, J. C. Weaver, Y. Brechet and Y. Estrin: ‘Responsive materials: A novel design for enhanced machine-augmented composites’, Sci. Rep., 2014, 4, 1–6.
  • K. Bhattacharya and R. D. James: ‘The material is the machine’, Science, 2005, 307, (5706), 53–54.
  • R. M. Erb, J. S. Sander, R. Grisch and A. R. Studart: ‘Self-shaping composites with programmable bioinspired microstructures’, Nat Commun.,2013, 4, 1712.
  • L. Guiducci, P. Fratzl, Y. J. M. Brechet, and J. W. C. Dunlop: ‘Pressurized honeycombs as soft-actuators: a theoretical study’, J. R Soc. Interface, 2014, 11, (98), 607–612.
  • B. R. Bruhn, T. B. H. Schroeder, S. Li, Y. N. Billeh, K. W. Wang and M. Mayer: ‘Osmosis-Based Pressure Generation: Dynamics and Application’, Plos One, 2014, 9, (3), e91350.
  • R. Doursat, H. Sayama and O. Michel: ‘A review of morphogenetic engineering’, Nat. Comput., 2013, 12, (4), 517–535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.