926
Views
155
CrossRef citations to date
0
Altmetric
Review

Welding residual stresses in ferritic power plant steels

Pages 1009-1020 | Published online: 02 Dec 2013

References

  • P. J. Withers and H. K. D. H. Bhadeshia: ‘Residual stress part 1 — measurement techniques’, Mater. Sci. Technot, 2001, 17, (4), 355–365.
  • P. J. Withers and H. K. D. H. Bhadeshia: ‘Residual stress part 2 — nature and origins’, Mater. Sci. Technot, 2001, 17, (4), 366–375.
  • D. Radaj: ‘Heat effects of welding — temperature field, residual stress, distortion’, 1-18; 1992, Berlin Heidelberg, Springer-Verlag.
  • X. H. Cheng, J. W. Fisher, H. J. Prask, T. Gnaupel-Herold, B. T. Yen and S. Roy: ‘Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures’, Int. J. Fatig., 2003, 25, (9-11), 1259–1269.
  • W. Fricke: ‘Effects of residual stresses on the fatigue behaviour of welded steel structures’, Mater. Werkstofftechn., 2005, 36, (11), 642–649.
  • D. J. Hornbach and P. S. Prevey: ‘The effect of prior cold work on tensile residual stress development in nuclear weldments’, J. Press. Vessel Technot, 2002, 124, (3), 359–365.
  • D. P. G. Lidbury: ‘The significance of residual stresses in relation to the integrity of LWR pressure vessels’, Int. J. Press Vessels Piping, 1984, 17, (4), 197–328.
  • D. T. Read: ‘Measurement of applied j-integral produced by residual-stress’, Eng. Fract. Mech., 1989, 32, (1), 147–153.
  • M. Turski, A. H. Sherry, P. J. Bouchard and P. J. Withers: ‘Residual stress driven creep cracking in type 316 stainless steel’, J. Neutron Res., 2004, 12, (1-3), 45–49.
  • P. J. Bouchard, P. J. Withers, S. A. McDonald and R. K. Heenan: ‘Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel’, Acta Mater., 2004, 52, (1), 23–34.
  • R. A. Ainsworth, J. K. Sharples and S. D. Smith: ‘Effects of residual stresses on fracture behaviour — experimental results and assessment methods’, J. Strain Anal. Eng. Design, 2000, 35, (4), 307–316.
  • R. A. Ainsworth: ‘125 procedures for assessing structural integrity of components under creep and creep-fatigue conditions’, Int. Mater. Rev., 2006, 51, (2), 107–126.
  • Y. Lei, N. P. O'Dowd and G. A. Webster: ‘Fracture mechanics analysis of a crack in a residual stress field’, Int. J. Fract., 2000, 106, (3), 195–216.
  • D. J. Smith, P. J. Bouchard and D. George: ‘Measurement and prediction of residual stresses in thick-section steel welds’, J. Strain Anal. Eng. Design, 2000, 35, (4), 287–305.
  • P. Duranton, J. Devaux, V. Robin, P. Gilles and J. M. Bergheau: ‘3D modelling of multipass welding of a 316L stainless steel pipe’, J. Mater. Process. Technol., 2004, 153-154, 457–463.
  • C. D. Elcoate, R. J. Dennis, P. J. Bouchard and M. C. Smith: ‘Three dimensional multi-pass repair weld simulations’, Int. J. Press. Vessels Piping, 2005, 82, (4), 244–257.
  • R. Kohno and S. B. Jones: ‘An initial study of arc energy and thermal cycles in the submerged arc welding of steel’, Technical report 81/1978/PE, The Welding Institute, Abington, Cambridge, England, 1978.
  • S. L. Mannan and K. Laha: ‘Creep behaviour of Cr—Mo steel weldments’, Trans. Ind. Inst. Met., 1996, 49, (4), 303–320.
  • J. A. Francis, W. Mazur and H. K. D. H. Bhadeshia: ‘Type IV cracking in ferritic power plant steels’, Mater. Sci. Technol, 2006, 22, (12), 1387–1395.
  • V. Karthik, K. V. Kasiviswanathan, K. Laha and B. Raj: ‘Determination of gradients in mechanical properties of 2.25Cr-1Mo weldments using shear-punch tests’, Weld J, 2002, 81, (12), 265S-272S.
  • J. F. Lancaster: ‘Metallurgy of welding’, 6th edn, 211-309; 1999, Abington, Cambridge, Abington Publishing.
  • R. K. Nanstad, D. E. McCabe, M. A. Sokolov, C. A. English and S. R. Ortner: ‘Comparison of effects of thermal aging, irradiation, and thermal annealing on the propensity for temper embrittlement on an RPV submerged-arc weld HAZ’, ORNL Letter report ORNL/NRC/LTR-01/07, Oak Ridge National Laboratory, December 2001.
  • S. Issler, A. Klenk, A. A. Shibli and J. A. Williams: ‘Weld repair of ferritic welded materials for high temperature application’, Int. Mater. Rev., 2004, 49, (5), 299–324.
  • K. S. Kweon, J. H. Kim, J. H. Hong and C. H. Lee: ‘Microstructure and toughness of intercritically reheated heat affected zone in reactor pressure vessel steel weld’, Sci. Technol. Weld. Join., 2000, 5, (3), 161–167.
  • M. Hamada: ‘Control of strength and toughness at the heat affected zone’, Weld. Int., 2003, 17, (4), 265–270.
  • G. M. Reddy, T. Mohandas and D. S. Sarma: ‘Cold cracking studies on low alloy steel weldments: effect of filler metal composition’, Sci. Technot Weld Join., 2003, 8, (6), 407–414.
  • J. Onoro: ‘Weld metal microstructure analysis of 9-12% Cr steels’, Int. J. Press. Vessels Piping, 2006, 83, 540–545.
  • A. C. Hunt, A. O. Kluken and G. R. Edwards: ‘Heat input and dilution effects in microalloyed steel weld metals’, Weld. 1, 1994, 73, (1), S9—S15.
  • K. Easterling: ‘Introduction to the physical metallurgy of welding’, 2nd edn, 1-54; 1992, Oxford, Butterworth Heinemann.
  • K. Suzuki, I. Kurihara, T. Sasaki, Y. Koyoma and Y. Tanaka: ‘Application of high strength MnMoNi steel to pressure vessels for nuclear power plant’, Nuclear Eng. Design, 2001; 206, 261–278.
  • H. K. D. H. Bhadeshia: ‘Steels — microstructure and properties’, 3rd edn; 2006, Oxford, Elsevier.
  • J. S. Kirkaldy and D. Venugopalan: ‘Prediction of microstructure and hardenability in low alloy steels’, in ‘Phase transformations in ferrous alloys’, (eds. A. R. Marder and J. I. Goldstein), 125-148; 1984, New York, AIME.
  • M. V. Li, D. V. Niebuhr, L. L. Meekisho and D. G. Atteridge: ‘A computational model for the prediction of steel hardenability’, Metall. Mater. Trans. B, 1998, 29B, (3), 661–672.
  • C. Zener: ‘Kinetics of the decomposition of austenite’, Trans. AIME, 1946, 167, 550–583.
  • M. Hillert: ‘The role of interfacial energy during solid state phase transformations’, Jernkont. Ann., 1957, 141, 557–585.
  • K. W. Andrews: J. Iron Steel Inst., 1969, 203, 721–727.
  • J.-S. Kim, S.-H. Lee and T.-E. Jin: 'Fatigue evaluation of dissimilar welds on nuclear components', Proc. 17th Int. Conf. on ‘Structural mechanics in reactor technology’ (SMiRT 17), Prague, Czech Republic, August 2003, International Association for Structural Mechanics in Reactor Technology, Paper D03-2.
  • J. B. Leblond and J. Devaux: ‘A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size’, Acta Metall., 1984, 32, (1), 137–146.
  • H. K. D. H. Bhadeshia: ‘Developments in martensitic and bainitic steels: role of the shape deformation’, Mater. Sci. Eng. A, 2004, A378, (1-2), 34–39.
  • J. B. Leblond, G. Mottet and J. C. Devaux: ‘A theoretical and numerical approach to the plastic behaviour of steels during phase transformations’, J. Mech. Phys. Solids, 1986, 34, (4), 395–409.
  • G. W. Greenwood and R. H. Johnson: Proc. Royal Soc., 1965, 238, 403–422.
  • R. H. Johnson and G. W. Grenwood: Nature, 1962, 195, 138–139.
  • J. R. Patel and M. Cohen: Acta Metall., 1953, 1, 531–538.
  • C. L. Magee: ‘Phase transformations’, (eds. V. F. Zackay and H. I. Aaronson), 115-156; 1970, Metals Park, OH, ASM.
  • H. K. D. H. Bhadeshia, S. A. David, J. M. Vitek and R. W. Reed: ‘Stress induced transformation to bainite in Fe—Cr—Mo—C pressure vessel steel’, Mater. Sci. Technol, 1991,7, (8), 686–698.
  • P. H. Shipway and H. K. D. H. Bhadeshia: ‘The effect of small stresses on the kinetics of the bainite transformation’, Mater. Sci. Eng. A, 1995, A201, 143–149.
  • A. Matsuzaki, H. K. D. H. Bhadeshia and H. Harada: Acta Metall Mater., 1994, 42, 1081–1090.
  • N. Gey, B. Petit and M. Humbert: Metall. Mater. Trans. A, 2005, 36A, (12), 3291–3299.
  • S. Kundu and H. K. D. H. Bhadeshia: Scr. Mater., 2006, 55, 779–781.
  • H. K. D. H. Bhadeshia: ISIJ Int., 2002, 42, 1059–1060.
  • W. K. C. Jones and P. J. Alberry: in Terrific steels for fast reactor steam generators', 1-4; 1977, London, British Nuclear Engineering Society.
  • W. K. C. Jones and P. J. Alberry: in ‘Residual stresses in welded constructions’, 1977, Cambridge, The Welding Institute.
  • T. Nitschke-Pagel and H. Wohlfahrt: ‘Residual stresses in welded joints — sources and consequences’, Mater. Sci. Forum, 2002, 404-407, 215–224.
  • P. J. Pouchard and P. J. Withers: ‘The appropriateness of residual stress length scales in structural integrity’, J. Neutr. Res., 2004, 12, (1-3), 81–91.
  • A. Ohta, N. Suzuki, Y. Maeda, K. Hiraoka and T. Nakamura: ‘Superior fatigue crack growth properties in newly developed weld metal’, Int. J. Fatig., 1999, 21, S113—S118.
  • A. Ohta, K. Matsuoka, N. T. Nguyen, Y. Maeda and N. Suzuki: 'Fatigue strength improvement of lap joints of thin steel plate using low-transformation-temperature welding wire', Weld. I, 2003, 82, (4), 78S-83S.
  • W. X. Wang, L. X. Huo, Y. F. Zhang, D. P. Wang and H. Y. Jing: ‘New developed welding electrode for improving the fatigue strength of welded joints’, J. Mater. Sci. Technol, 2002, 18, (6), 527–531.
  • J. W. H. Price, A. Paradowska, S. Joshi and T. Finlayson: ‘Residual stresses measurement by neutron diffraction and theoretical estimation in a single weld bead’, Int. J. Press. Vessels Piping, 2006, 83, 381–387.
  • S. T. Kimmins and D. J. Smith: J. Strain Anal., 1998, 33, (3), 195–206.
  • S. Hossain, C. E. Truman, D. J. Smith and M. R. Daymond: ‘Application of quenching to create highly triaxial residual stresses in type 316H stainless steels’, Int. J. Mech. Sci., 2006, 48, 235–243.
  • R. J. Dennis and N. A. Leggatt: ‘Optimisation of weld modelling techniques, bead-on-plate analysis’, Proc. ASME PVP2006, Vancouver, Canada, July 2006, ASME.
  • J. Goldak, A. Chakravarti and M. Bibby: ‘A new finite-element model for welding heat-sources’, Metall. Trans. B, 1984, 15B, (2), 299–305.
  • J. K. Hong, C. L. Tsai and P. Dong: ‘Assessment of numerical procedures for residual stress analysis of multipass welds’, Weld J, 1998, 77, (9), 372S-382S.
  • P. Dong and K. Hong: ‘Recommendations for determining residual stresses in fitness for service assessments’, WRC Bulletin 476, New York, November 2002.
  • T. Zacharia, J. M. Vitek, J. A. Goldak, T. A. Debroy, M. Rappaz and H. K. D. H. Bhadeshia: ‘Modelling of fundamental phenomena in welds’, Model. Simul. Mater. Sci. Eng., 1995, 3, 265–288.
  • T. Debroy and S. A. David: ‘Physical processes in fusion welding’, Rev. Modern Phys., 1995, 67, (1), 85–112.
  • S. Mishra and T. Debroy: ‘A genetic algorithm and gradient-descent-based neural network with the predictive power of a heat and fluid flow model for welding’, Weld. 1, 2006, 85, (11), 231s-242s.
  • A. Kumar and T. Debroy: ‘Calculation of three-dimensional electromagnetic force field during arc welding’, J. Appl. Phys., 2003, 94, (2), 1267–1277.
  • S. A. David, S. S. Babu and J. M. Vitek: ‘Recent advances in modelling and characterisation of weld microstructures’, Sci. Technot Weld Join., 2001, 6, (6), 341–346.
  • D. F. Watt, L. Coon, M. Bibby, J. Goldak and C. Henwood: ‘An algorithm for modeling microstructural development in weld heat-affected zones: part A — reaction kinetics’, Acta Metall, 1988, 36, (11), 3029–3035.
  • C. Henwood, M. Bibby, J. Goldak and D. Watt: ‘Coupled transient heat transfer-microstructure weld computations: part B’, Acta Metall, 1988, 36, (11), 3037–3046.
  • L.-E. Lindgren: ‘Finite element modeling and simulation of welding part 2: improved material modeling’, J. Therm. Stress., 2001, 24, 195–231.
  • M. Preuss, J. Pang, P. J. Withers and G. J. Baxter: ‘Inertia welding nickel-based superalloy: metallurgical development’, Metall Mater. Trans. A, 2002, 33A, (10), 3215–3225.
  • M. Preuss, J. Pang, P. J. Withers and G. J. Baxter: ‘Inertia welding nickel-based superalloy: residual stress development’, Metall. Mater. Trans. A, 2002, 33A, (10), 3227–3234.
  • D. Deng and H. Murakawa: ‘Prediction of welding residual stress in multi-pass butt-welded modified 9Cr—lMo steel pipe considering phase transformation effects’, Comput. Mater. Sci, 2006, 37, 209–219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.