547
Views
0
CrossRef citations to date
0
Altmetric
Editorial

EDITORIAL

Pages 1613-1619 | Published online: 12 Nov 2013

References

  • Goodhew PJ, Dobson PS, Smallman RE: ‘Extrinsic stacking-fault energies in f.c.c. materials’, Met. Sci. J., 1967, 1, 198–201.
  • Westmacott KH, Smallman RE, Dobson PS: ‘The annealing of voids in quenched aluminium and a determination of the surface energy’, Met. Sci. J., 1968, 2, 177–181.
  • Peck RL, Westmacott KH: ‘Further studies of dislocation-loop annealing in aluminium-base alloys’, Met. Sci., 1975, 9, 283–288.
  • Roques-Carmes C, Aucouturier M, Lacombe P: ‘The influence of testing temperature and thermal history on the intergranular embrittlement and penetration of aluminium by liquid gallium’, Met. Sci. J., 1973, 7, 128–132.
  • Bukalil RH, Roques-Carmes C, Tixier R, Aucouturier M, Lacombe P: ‘Fractographic investigation of grain-boundary precipitates in Al–Cu Alloys (1 and 4 wt.-% Cu) by gallium embrittlement’, Met. Sci., 1974, 8, 387–393.
  • Gardiner RW, Bishop AW, Gilmore CJ: ‘Extrusion of vapour deposited Al–7·5Cr–1·2Fe (wt-%) alloy (RAE Alloy 72)’, Mater. Sci. Technol., 1991, 7, 410–418.
  • Saunders N, Rivlin VG: ‘Thermodynamic characterization of Al–Cr, Al–Zr, and Al–Cr–Zr alloy systems’, Mater. Sci. Technol., 1986, 2, 521–527.
  • Zhang XD, Loretto MH: ‘Stability and decomposition mechanisms of supersaturated solid solutions in rapidly solidified aluminium-transition metal alloys’, Mater. Sci. Technol., 1996, 12, 19–24.
  • Marshall GJ, Hughes IR, Miller WS: ‘Effect of consolidation route on structure and property control in rapidly solidified Al–Cr–Zr–Mn powder alloy for high temperature service’, Mater. Sci. Technol., 1986, 2, 394–399.
  • Adkins NJ, Tsakiropoulos P: ‘Design of powder metallurgy aluminium alloys for applications at elevated temperatures: Part 2, Tensile properties of extruded and Conformed gas atomised powders’, Mater. Sci. Technol., 1991, 7, 419–426.
  • Machler R, Uggowitzer PJ, Solenthaler C, Pedrazzoli RM, O Spiedel M: ‘Structure, mechanical properties, and stress corrosion behaviour of high strength spray deposited 7000 series aluminium alloy’, Mater. Sci. Technol., 1991, 7, 447–451.
  • Matsuki K, Xiang S, Kimoto T, Tokizawa M, Yokote T, Kusui J, Fujii K: ‘Effect of solidification microstructure on strength and ductility of powder metallurgical 2024–3Fe–5Ni aluminium alloy’, Mater. Sci. Technol., 1997, 13, 477–483.
  • Gholinia A, Prangnell PB: ‘Cast microstructure and dispersoid formation in spray deposited Al–Li alloys’, Mater. Sci. Technol., 1999, 15, 328–336.
  • Eschenbach L, Solenthaler C, Uggowitzer PJ, O Speidel M: ‘Strength and fracture toughness of spray formed Al–Cu–Mg–Ag alloys’, Mater. Sci. Technol., 1999, 15, 926–932.
  • Krajnikov AV, Shmakov YuV, Thompson GE: ‘High strength weldable Al–Zn–Mg base alloys produced by water atomisation’, Mater. Sci. Technol., 2003, 19, 1207–1214.
  • Ball A, Hutchinson MM: ‘Superplasticity in the aluminium–zinc eutectoid’, Met. Sci. J., 1969, 3, 1–7.
  • Todd RI: ‘Critical review of mechanism of superplastic deformation in fine grained metallic materials’, Mater. Sci. Technol., 2000, 16, 1287–1294.
  • Matsuki K, Uetani Y, Yamada M, Murakami Y: ‘Superplasticity in an Al–6 wt-%Mg alloy’, Met. Sci., 1976, 10, 235–242.
  • Matsuki K, Morita H, Yamada M, Murakami Y: ‘Relative motion of grains during superplastic flow in an Al–9Zn–1 wt.%Mg alloy’, Met. Sci., 1977, 11, 156–163.
  • Grimes R, Stowell MJ, Watts BM: ‘Superplastic aluminium-based alloys’, Metals Tech., 1976, 3, 154–160.
  • Watts BM, Stowell MJ, Baikie BL, Owen DGE: ‘Superplasticity in Al–Cu–Zr alloys’, Met. Sci., 1976, 10, 189–206.
  • Ridley N, Cullen E, Humphreys FJ: ‘Effect of thermomechanical processing on evolution of superplastic microstructures in Al–Cu–Zr alloys’, Mater. Sci. Technol., 2000, 16, 117–124.
  • Iwasaki H, Mori T, Mabuchi M, Higashi K: ‘Microstructural evolution and plastic stability during superplastic flow in a 7475 aluminium alloy’, Mater. Sci. Technol., 1999, 15, 180–184.
  • Li F: ‘Microstructural evolution and mechanisms of superplasticity in an Al–4·5%Mg alloy’, Mater. Sci. Technol., 1997, 13, 17–23.
  • Wu H.-Y, Lee S, Wang J.-Y: ‘Effect of inverted pressurisation profile on deformation characteristics of 5083 aluminium alloy during superplastic forming’, Mater. Sci. Technol., 2002, 18, 438–444.
  • Grimes R, Dashwood RJ, Harrison AW, Flower HM: ‘Development of a high strain rate superplastic Al–Mg–Zr alloy’, Mater. Sci. Technol., 2000, 16, 1334–1339.
  • Grimes R: ‘Superplastic forming: evolution from metallurgical curiosity to major manufacturing tool?’, Mater. Sci. Technol., 2003, 19, 3–10.
  • Stowell MJ: ‘Cavity growth in superplastic alloys’, Met. Sci., 1980, 14, 267–272.
  • Stowell MJ: ‘Failure of superplastic alloys’, Met. Sci., 1983, 17, 1–11.
  • Martin CF, Josserond C, Blandin JJ, Salvo L, Cloetens P, Boller E: ‘X-ray microtomography study of cavity coalescence during superplastic deformation of an Al–Mg alloy’, Mater. Sci. Technol., 2000, 16, 1299–1301.
  • Clyne TW, Robert MH: ‘Stability of intermetallic aluminides in liquid aluminium and implications for grain refinement’, Metals Tech., 1980, 7, 177–185.
  • Arnberg L, Backerud L, Klang H: ‘Grain refinement of aluminium’, Metals Tech., 1982, 9, 1–17.
  • Quested TE: ‘Understanding mechanisms of grain refinement of aluminium alloys by inoculation’, Mater. Sci. Technol., 2004, 20, 1357–1369.
  • Kearns MA, Cooper PS: ‘Effects of solutes on grain refinement of selected wrought aluminium alloys’, Mater. Sci. Technol., 1997, 13, 650–654.
  • Karantzalis AE, Kennedy AR: ‘Nucleation behaviour of TiB2 particles in pure Al and effect of elemental additions’, Mater. Sci. Technol., 1998, 14, 1092–1096.
  • Schumacher P, Greer AL, Worth J, Evans PV, Kearns MA, Fisher P, Green AH: ‘New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice’, Mater. Sci. Technol., 1998, 14, 394–404.
  • Bowen JR, Prangnell PB, Humphreys FJ: ‘Microstructural evolution during formation of ultrafine grain structures by severe deformation’, Mater. Sci. Technol., 2000, 16, 1246–1250.
  • Hayes JS, Keyte R, Prangnell PB: ‘Effect of grain size on tensile behaviour of a submicron grained Al–3 wt-%Mg alloy produced by severe deformation’, Mater. Sci. Technol., 2000, 16, 1259–1263.
  • Gholinia A, Humphreys FJ, Prangnell PB: ‘Processing to ultrafine grain structures by conventional routes’, Mater. Sci. Technol., 2000, 16, 1251–1255.
  • Humphreys FJ: ‘Recrystallization mechanisms in two-phase alloys’, Met. Sci., 1979, 13, 136–145.
  • Furrer P, Hausch G: ‘Recrystallization behaviour of commercial Al–1%Mn alloy’, Met. Sci., 1979, 13, 156–162.
  • Gardner KJ, Grimes R: ‘Recrystallization during hot deformation of aluminium alloys’, Met. Sci., 1979, 13, 216–222.
  • Humphreys FJ, Chan HM: ‘Discontinuous and continuous annealing phenomena in aluminium–nickel alloy’, Mater. Sci. Technol., 1996, 12, 143–148.
  • Humphreys FJ: ‘A new analysis of recovery, recrystallisation and grain growth’, Mater. Sci. Technol., 1999, 15, 37–44.
  • Somerday M, Humphreys FJ: ‘Recrystallisation behaviour of supersaturated Al–Mn alloys’, Mater. Sci. Technol., 2003, 19, 20–35.
  • Kanno M, Araki I, Cui Q: ‘Precipitation behaviour of 7000 alloys during retrogression and reaging treatment’, Mater. Sci. Technol., 1994, 10, 599–603.
  • Ghosh KS, Das K, Chatterjee UK: ‘Studies of microstructural changes upon retrogression and reaging (RRA) treatment to 8090 Al–Li–Cu–Mg–Zr alloy’, Mater. Sci. Technol., 2004, 20, 825–834.
  • Lumley RN, Polmear IJ, Morton AJ: ‘Interrupted aging and secondary precipitation in aluminium alloys’, Mater. Sci. Technol., 2003, 19, 1483–1490.
  • Lumley RN, Polmear IJ, Morton AJ: ‘Development of mechanical properties during secondary aging in aluminium alloys’, Mater. Sci. Technol., 2005, 21, 1025–1032.
  • Gao N, Starink MJ, Davin L, Cerezo A, Wang SC, Gregson PJ: ‘Microstructure and precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys’, Mater. Sci. Technol., 2005, 21, 1010–1018.
  • Ashby MF: ‘Physical modelling of materials problems’, Mater. Sci. Technol., 1992, 8, 102–111.
  • Bhadeshia HKDH: ‘Mathematical models in materials science’, Mater. Sci. Technol., 2008, 24, 128–136.
  • Stoneham AM, Harding JH: ‘Mesoscopic modelling: materials at the appropriate scale’, Mater. Sci. Technol., 2009, 25, 460–465.
  • Castro-Fernandez FR, Sellars CM, Whiteman JA: ‘Changes of flow stress and microstructure during hot deformation of Al–1Mg–1Mn’, Mater. Sci. Technol., 1990, 6, 453–460.
  • Sellars CM: ‘Modelling microstructural development during hot rolling’, Mater. Sci. Technol., 1990, 6, 1072–1081.
  • Shi H, McLaren AJ, Sellars CM, Shahani R, Bolingbroke R: ‘Constitutive equations for high temperature flow stress of aluminium alloys’, Mater. Sci. Technol., 1997, 13, 210–216.
  • Mizra MS, Sellars CM, Karhausen K, Evans P: ‘Multipass rolling of aluminium alloys: finite element simulations and microstructural evolution’, Mater. Sci. Technol., 2001, 17, 874–879.
  • Timothy SP, Yiu HL, Fine JM, Ricks RA: ‘Simulation of single pass of hot rolling deformation of aluminium alloy by plane strain compression’, Mater. Sci. Technol., 1991, 7, 255–261.
  • Chen BK, Thomson PF, Choi SK: ‘Computer modelling of microstructure during hot flat rolling of aluminium’, Mater. Sci. Technol., 1992, 8, 72–77.
  • Wells MA, Maijer DM, Jupp S, Lockhart G, van der Winden MR: ‘Mathematical model of deformation and microstructural evolution during hot rolling of aluminium alloy 5083’, Mater. Sci. Technol., 2003, 19, 467–476.
  • Serajzadeh S: ‘Modelling flow stress behaviour of aluminium alloys during hot rolling’, Mater. Sci. Technol., 2006, 22, 713–718.
  • Ahmed H, Wells MA, Maijer DM, van der Winden MR: ‘Application of a mathematical model to multipass hot deformation of aluminium alloy AA 5083’, Mater. Sci. Technol., 2008, 24, 787–797.
  • Shercliff HR, Ashby MF: ‘Modelling thermal processing of aluminium alloys’, Mater. Sci. Technol., 1991, 7, 85–88.
  • Go J, Poole WJ, Militzer M, Wells MA: ‘Modelling recovery and recrystallisation during annealing of AA 5754 aluminium alloy’, Mater. Sci. Technol., 2003, 19, 1361–1368.
  • Marthinsen K, Nes E: ‘Modelling strain hardening and steady state deformation of Al–Mg alloys’, Mater. Sci. Technol., 2001, 17, 376–388.
  • Poole WJ, Shercliff HR, Castillo T: ‘Process model for two step age hardening of 7475 aluminium alloy’, Mater. Sci. Technol., 1997, 13, 897–904.
  • Robson JD: ‘Modelling the evolution of particle size distribution during nucleation, growth and coarsening’, Mater. Sci. Technol., 2004, 20, 441–448.
  • Khan IN, Starink MJ: ‘Microstructure and strength modelling of Al–Cu–Mg alloys during non-isothermal treatments. Part 1 – Controlled heating and cooling’, Mater. Sci. Technol., 2008, 12, 1403–1410.
  • Khan IN, Starink MJ, Sinclair I, Wang SC: ‘Microstructure and strength modelling of Al–Cu–Mg alloys during non-isothermal treatments. Part 2 – Welds’, Mater. Sci. Technol., 2008, 12, 1411–1418.
  • Hersent E, Driver JH, Piot D, Desrayaud C: ‘Integrated modelling of precipitation during friction stir welding of 2024–T3 aluminium alloy’, Mater. Sci. Technol., 2010, 26, 1345–1352.
  • Chen JY, Fan Z: ‘Modelling of rheological behaviour of semisolid metal slurries’, Mater. Sci. Technol., 2002, 18, 237–267.
  • Solek K, Stuczynski T, Bialobrzeski A, Kuziak R, Mitura Z: ‘Modelling thixocasting with precise accounting of moving front of material’, Mater. Sci. Technol., 2005, 21, 551–558.
  • Noble B, Thompson GE: ‘Precipitation characteristics of aluminium–lithium alloys’, Met. Sci., 1971, 5, 114–120.
  • Noble B, Thompson GE: ‘T1 (Al2CuLi) precipitation in aluminium–copper–lithium alloys’, Met. Sci., 1972, 6, 167–174.
  • Noble B, Harris SJ, Dinsdale K: ‘Yield characteristics of aluminium–lithium alloys’, Met. Sci., 1982, 16, 425–430.
  • Gregson PJ, Flower HM, Tite CNJ, Mukhopdhyay AK: ‘Role of vacancies in coprecipitation of δ′- and S-phases in Al–Li–Cu–Mg alloys’, Mater. Sci. Technol., 1986, 2, 349–353.
  • Huang ZW, Smallman RE, Loretto MH, White J: ‘Influence of lithium additions on precipitation and hardening of 6061’, Mater. Sci. Technol., 1991, 7, 205–212.
  • Huang ZW, Loretto MH, Smallman RE, White J: ‘Mechanism of nucleation and precipitation in 6061–Li alloys’, Mater. Sci. Technol., 1994, 10, 869–878.
  • Huang ZW, Loretto MH, White J: ‘Influence of lithium additions on precipitation and age hardening of 7075 alloy’, Mater. Sci. Technol., 1993, 9, 967–980.
  • Flower HM, Gregson PJ: ‘Solid state phase transformations in aluminium alloys containing lithium’, Mater. Sci. Technol., 1987, 3, 81–90.
  • Gregson PJ, Newman J, Gray A: ‘Effect of surface treatment on fatigue properties of Al–Li–Cu–Mg–Zr and Al–Zn–Mg–Cu–Zr plate’, Mater. Sci. Technol., 1989, 5, 65–70.
  • Srivatsan TS, Coyne EJ: ‘Micromechanisms governing fatigue behaviour of lithium containing aluminium alloys’, Mater. Sci. Technol., 1989, 5, 548–555.
  • Prasad NE, Rao PR: ‘Low cycle fatigue resistance of Al–Li alloys’, Mater. Sci. Technol., 2000, 16, 408–426.
  • Shercliff HR, Ashby MF: ‘Design with metal matrix composites’, Mater. Sci. Technol., 1994, 10, 443–451.
  • Shakesheff AJ, Purdue G: ‘Designing metal matrix composites to meet their target: particulate reinforced aluminium alloys for missile applications’, Mater. Sci. Technol., 1998, 14, 851–856.
  • Warner AEM, Bell JAE, Stephenson TF: ‘Opportunities for new graphitic aluminium metal matrix composite’, Mater. Sci. Technol., 1998, 14, 843–850.
  • Zeuner T, Stoyanov P, Sahm PR, Ruppert H, Engels A: ‘Developing trends in disc brake technology for rail application’, Mater. Sci. Technol., 1998, 14, 857–863.
  • Murphy AM, Howard SJ, Clyne TW: ‘Characterisation of severity of particle clustering and its effect on fracture of particulate MMCs’, Mater. Sci. Technol., 1998, 14, 959–968.
  • Karnezis PA, Durrant G, Cantor B, Palmiere EJ: ‘Mechanical properties and microstructure of twin roll cast Al–7Si/SiCp MMCs’, Mater. Sci. Technol., 1995, 11, 741–751.
  • Peng HX, Fan Z, Evans JRG: ‘Novel MMC microstructures prepared by melt infiltration of reticulated ceramic preforms’, Mater. Sci. Technol., 2000, 16, 903–907.
  • Zhou Z, Peng HX, Fan Z, Li DX: ‘MMCs with controlled non-uniform distribution of submicrometre Al2O3 particles in 6061 aluminium alloy matrix’, Mater. Sci. Technol., 2000, 16, 908–912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.