427
Views
11
CrossRef citations to date
0
Altmetric
Research Papers

Thermally activated growth of lath martensite in Fe–Cr–Ni–Al stainless steel

, , &
Pages 115-122 | Received 27 Jan 2014, Accepted 17 May 2014, Published online: 30 May 2014

References

  • Wakasa K and Wayman CM: ‘Crystallography and morphology of ferrous lath martensite’, Acta Metal., 1981, 29, 991–1001.
  • Morito S, Huang X, Furuhara T, Maki T and Hansen N: ‘The morphology and crystallography of lath martensite in steel’, Acta Mater., 2006, 54, 5323–5331.
  • Shimizu K, Oka M and Wayman CM: ‘The association of martensite platelets with austenite stacking faults in an Fe-8Cr-1C alloy’, Acta Metall., 1970, 18, (9), 1005–1011.
  • Shibata A, Morito S, Furuhara T and Maki T: ‘Substructures of lenticular martensites with different martensite start temperatures in ferrous alloys’, Acta Mater., 2009, 57, (2), 483–492.
  • Maki T and Wayman CM: ‘Substructure of ausformed martensite in Fe-Ni and Fe-Ni-C alloys’, Metall. Trans. A, 1976, 7A, (9), 1511–1518.
  • Krauss G and Marder AR: ‘The morphology of martensite in iron alloys’, Metall. Trans., 1971, 9, (2), 2343–2357.
  • Thadhani NN and Meyers MA: ‘Kinetics of isothermal martensitic transformation’, Prog. Mater. Sci., 1986, 30, (1), 1–37.
  • Nishiyama Z: ‘Martensitic transformation’; 1978, New York, Academic Press.
  • Takashima K, Higoa Y and Nunomura S: ‘The propagation velocity of the martensitic transformation in 304 stainless steel’, Philos. Mag. A, 1984, 49A, (2), 231–241.
  • Foerster F and Scheil E: ‘Acoustical study of formation of martensite needles’, Naturwissenschaften, 1936, 28, (9), 245–247.
  • Lee JH, Fukuda T and Kakeshita T: ‘Isothermal martensitic transformation in sensitized SUS304 austenitic stainless steel at cryogenic temperature’, Mater. Trans., 2009, 50, (3), 473–478.
  • Yang D.-Z and Wayman CM: ‘Slow growth of isothermal lath martensite in an Fe;21Ni;4Mn alloy’, Acta Metall., 1984, 32, (6), 949–954.
  • Kakeshita T, Kuroiwa K, Shimizu K, Ikeda T, Yamagishi A and Date M: ‘Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe-Ni-Mn alloys’, Mater. Trans. JIM, 1993, 34, (5), 415–422.
  • Araki T, Shibata K, Asakura K and Wada H: ‘Direct observation of the gamma yields alpha prime isothermal martensitic transformation of iron alloys in electron microscope’, ISIJ, 1975, 15, (4), 175–184.
  • Marder JM and Marder AR: ‘Formation of low carbon martensite in Fe-C alloys’, ASM Trans., 1969, 62, (1), 1–10.
  • Pati SR and Cohen M: ‘Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy’, Acta Metall., 1971, 19, (12), 1327–1332.
  • Brook R and Entwisle AR: ‘Kinetics of burst transformation to martensite’, J. Iron Steel Inst., 1965, 203, (9), 905–912.
  • Raghavan V: in ‘Martensite’, (ed. Olson G B and Owen W S), 202–225; 1992, Metals Park, OH, ASM.
  • Guimarães JRC and Rios PR: ‘Spatial aspect of martensite’, Metall. Mater. Trans. A, 2012, 43A, 2218–2224
  • Rios PR and Guimarães JRC: ‘Formal analysis of isothermal martensite spread’, Mater. Res., 2008, 11, (1), 103–108.
  • Guimarães JRC: ‘Isothermal martensite: austenite grain size and kinetics of “spread”’, Mater. Sci. Technol., 2008, 24, (7), 843–847.
  • Olson GB and Cohen M: ‘A perspective on martensitic nucleation’, Ann. Rev. Mater. Sci., 1981, 11, 1–30.
  • Ullakko K, Nieminen M and Pietikainen J: ‘Prevention of martensitic transformation during rapid cooling’, Mater. Sci. Forum, 1991, 56, 225–228.
  • Zhao J and Jin Z: ‘Isothermal decomposition of supercooled austenite in steels’, Mater. Sci. Technol., 1992, 8, (11), 1004–1010.
  • San Martin D, Jimenez-Melero E, Duffy JA, Honkimaki V, van der Zwaag S and van Dijk NH: ‘Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fields’, Appl. Cryst., 2012, 45, 718–757.
  • Villa M, Pantleon K and Somers MAJ: ‘Martensitic transformation and stress partitioning in a high-carbon steel’, Scr. Mater., 2012, 67, (6), 621–624.
  • Golovchiner KJ: ‘Changes in the lattice parameter of austenite during martensitic transformation of steel’, Phys. Met. Metallogr., 1974, 37, (2), 126.
  • Miyamoto G, Shibata A, Maki T and Furuhara T: ‘Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis’, Acta Mater., 2009, 57, (4), 1120–1131.
  • Edmondson B and Ko T: ‘Spontaneous deformation of austenite during martensitic transformations’, Acta Metall., 1954, 2, 235–241.
  • Pati JR and Cohen M: ‘Criterion for the action of applied stress in the martensitic transformation’, Acta Mater., 1953, 1, (5), 531–538.
  • Kakeshita T, Kuroiwa K, Shimizu K, Ikeda T, Yamagishi A and Date MA: ‘A new model explainable for both the athermal and isothermal natures of martensitic transformations in Fe-Ni-Mn alloys’, Mater. Trans. JIM, 1993, 34, (5), 423–428.
  • Kakeshita T, Saburi T and Shimizu K: ‘Effects of hydrostatic pressure and magnetic field on martensitic transformations’, Mater. Sci. Eng. A, 1999, A273–A275, 21–39.
  • Xie ZL, Sundqvist B, Hanninen H and Pietikainen J: ‘Isothermal martensitic transformation under hydrostatic pressure in an Fe-Ni-C alloy at low temperature’, Acta Metall. Mater., 1993, 41, (8), 2283–2290.
  • Xie ZL, Liu Y and Hanninen H: ‘Stabilization of retained austenite due to partial martensitic transformations’, Acta Metall. Mater., 1994, 42, (12), 4117–4133.
  • Shibata A, Murakami T, Morito S, Furuhara T and Maki T: ‘The origin of midrib in lenticular martensite’, Mater. Trans., 2006, 49, (6), 1242–1248.
  • Datta R, Ghosh G and Raghavan V: ‘Plastic accommodation during growth of the martensitic plates in Fe-Ni alloys’, Scr. Metall., 1986, 20, 559–563.
  • Chatterjee S, Wang HS, Yang JR and Bhadeshia HKDH: ‘Mechanical stabilization of austenite’, Mater. Sci. Technol., 2006, 22, 641–644.
  • Kajawara S: ‘Roles of dislocations and grain boundaries in martensite nucleation’, Metal. Trans. A, 1986, 17A, 1693–1702.
  • Van Bohemen SMC and Sietsma J: ‘Kinetics of martensite formation in plain carbon steels: critical assessment of possible influence of austenite grain boundaries and autocatalysis’, Mater. Sci. Technol., 2014, 30, (9), 1024–1033.
  • Van Bohemen SMC and Sietsma J: ‘Martensite formation in partially and fully austenitic plain carbon steels’, Mater. Sci. Technol., 2009, 25, (8), 1009–1012.
  • Kitahara H, Ueji R, Tsuji N and Minamino Y: ‘Crystallographic features of lath martensite in low-carbon steel’, Acta Mater., 2006, 54, (5), 1279–1288.
  • Morito S, Tanaka H, Konishi R, Furuhara T and Maki T: ‘The morphology and crystallography of lath martensite in Fe-C alloys’, Acta Mater., 2003, 51, (6), 1789–1799.
  • Furuhara T, Takayama N and Miyamoto G: ‘Key factors in grain refinement of martensite and bainite’, Mater. Sci. Forum, 2010, 638–642, 3044–3049.
  • San Martin D, P Aarts KW, Rivera-Diaz-del-Castillo PEJ, van Dijk NH, Bruck E and van der Zwaag S: ‘Isothermal martensitic transformation in a 12Cr-9Ni-4Mo-2Cu stainless steel in applied magnetic fields’, J. Magn. Magn. Mater., 2008, 320, (10), 1720–1728.
  • San Martin D, van Dijk NH, Jimenez-Melero E, Kampert E, Zeitler U and van der Zwaag S: ‘Real-time martensitic transformation kinetics in maraging steel under high magnetic fields’, Mater. Sci. Eng. A, 2010, A527, (20), 5241–5245.
  • Guimaraes JRC and Rios PR: ‘Unified model for plate and lath martensite with athermal kinetics’, Metall. Mater. Trans. A, 2010, 41A, (8), 1928–1935.
  • Kim D, Speer JG and De Cooman BC: ‘Isothermal Transformation of a CMnSi Steel Below the M-S Temperature’, Metall. Mater. Trans. A, 2011, 42A, (6), 1575–1585.
  • Ludwigson DC and Hall AM: ‘The physical metallurgy of precipitation-hardenable stainless steel’, Report III, Defence Metals Information Center, Columbus, OH, USA, 1959.
  • Kubyshkina TD, Pevzner LM, Potak YaM: ‘The martensitic transformation in stainless steels of the austenitic-martensitic class’, Metallov. i Term. Obrabotka, 1960, 8, (2), 9–17.
  • Slunder CJ, Hoenie AF and Hall AM: ‘Thermal and mechanical treatment for precipitation-hardening stainless steel’, 1967, NASA, Washington, DC.
  • Zhao L, van Dijk NH, Bruck E, Sietsma J and van der Zwaag S: ‘Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels’, Mater. Sci. Eng. A, 2001, A313, (1–2), 145–152.
  • Radu M, Valy J, Gourgues AF, Strat F and Pineau A: ‘Continuous magnetic method for quantitative monitoring of martensitic transformation in steels containing metastable austenite’, Scr. Mater., 2005, 52, (6), 525–530.
  • Koyano T: ‘Isothermal martensitic transformation of γ-FeN in a magnetic field’, Mater. Trans., 2003, 44, (12), 2541–2544.
  • Villa M: ‘Isothermal martensite formation’, PhD thesis, The Technical University of Denmark, Lyngby, Denmark, 2013.
  • Stojko A: ‘The effect of cryogenic treatment on structural and phase transformations in iron-carbon martensite’, PhD thesis, The Technical University of Denmark, Lyngby, Denmark, 2006.
  • Guorgues-Lorentzon AF: ‘Application of electron Backscatter diffraction to the study of phase transformations’, Int. Mater. Rev., 2007, 52, (2), 65–128.
  • Merinov P, Entin S, Beketov B and Runov A: ‘The magnetic testing of the ferrite content of austenitic stainless steel weld metal’, NDT Int., 1978, 11, (1), 9–14.
  • Mittemeijer EJ: ‘Analysis of the kinetics of phase transformations’, J. Mater. Sci., 1992, 27, (15), 3977–3987.
  • Liu YC, Sommer F and Mittemeijer EJ: ‘Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys’, Acta Mater., 2003, 51, (2), 507–519.
  • Liu YC, Sommer F and Mittemeijer EJ: ‘Kinetics of the abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys’, Acta Mater., 2004, 52, (9), 2549–2560.
  • Liu YC, Sommer F and Mittemeijer EJ: ‘Abnormal austenite-ferrite transformation kinetics of ultra-low-nitrogen Fe-N alloy’, Metall. Mater. Trans. A, 2008, 39A, (10), 2306–2318.
  • Liu YC, Sommer F and Mittemeijer EJ: ‘Abnormal austenite-ferrite transformation behavior in pure iron’, Chin. Sci. Bull., 2004, 49, (9), 972–975.
  • Grujicic M, Olson GB and Owen WS: ‘Mobility of martensitic interfaces’, Metall. Trans. A, 1985, 16A, (10), 1713–1722.
  • Yershov VM and Oslon NL: ‘Change in linear expansion coefficient of austenite on transformation to martensite’, Fiz. Met. Metalloved, 1968, 25, (5), 874–881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.