682
Views
51
CrossRef citations to date
0
Altmetric
Research Papers

Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels

, , , &
Pages 1508-1520 | Received 20 Oct 2014, Accepted 16 Dec 2014, Published online: 30 Dec 2014

References

  • Caballero FG, Bhadeshia H, Mawella KJA, Jones DG and Brown P: ‘Very strong low temperature bainite’, Mater. Sci. Technol., 2002, 18, (3), 279–284.
  • Caballero FG and Bhadeshia HKDH: ‘Very strong bainite’, Curr. Opin. Solid State Mater. Sci., 2004, 8, (3), 251–257.
  • Bhadeshia HKDH, Brown P and Garcia-Mateo C: ‘Bainite steel and methods of manufacture therof’, Patent GB2462197, 2010.
  • Garcia-Mateo C and Caballero FG: ‘Ultra-high-strength bainitic steels’, ISIJ Int., 2005, 45, (11), 1736–1740.
  • Garcia-Mateo C, Caballero FG, Sourmail T, Kuntz M, Cornide J, Smanio V and Elvira R: ‘Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon’, Mater. Sci. Eng. A, 2012, A549, 185–192.
  • Garcia-Mateo C, Sourmail T, Caballero F, Smanio V, Kuntz M, Ziegler C, Leiro A, Vuorinen E, Elvira R and Teeri T: ‘Nanostructured steel industrialisation: plausible reality’, Mater. Sci. Technol., 2014, 30, (9), 1071–1078.
  • Sourmail T, Caballero F, Garcia-Mateo C, Smanio V, Ziegler C, Kuntz M, Elvira R, Leiro A, Vuorinen E and Teeri T: ‘Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications’, Mater. Sci. Technol., 2013, 29, (10), 1166–1173.
  • Sournmail T, Smanio V, Ziegler C, Heuer V, Kuntz M, Caballero F, Garcia-Mateo C, Cornide J, Elvira R, Leiro A, Vuorinen E and Teeri T: ‘Novel nanostructured bainitic steel grades to answer the need for high-performance steel components (Nanobain)’, 129; 2013, Luxembourg, European Commission.
  • Leiro A, Vuorinen E, Sundin K, Prakash B, Sourmail T, Smanio V, Caballero F, Garcia-Mateo C and Elvira R: ‘Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions’, Wear, 2013, 298–299, 42–47.
  • Bhadeshia H and Christian J: ‘Bainite in steels’, Metall. Trans. A, 1990, 21A, (3), 767–797.
  • Bhadeshia HKDH: ‘Bainite in steels’, 2nd edn; 2001, London, Institute of Materials.
  • Avishan B, Yazdani S and Nedjad SH: ‘Toughness variations in nanostructured bainitic steels’, Mater. Sci. Eng. A, 2012, A548, 106–111.
  • Bhadeshia HKDH and Edmonds DV: ‘Bainite in silicon steels: new composition; property approach Part 1’, Met. Sci., 1983, 17, (9), 411–419.
  • Bhadeshia HKDH and Edmonds DV: ‘Bainite in silicon steels: new composition–property approach Part 2’, Met. Sci., 1983, 17, (9), 420–425.
  • Olson GB and Cohen M: ‘Kinetics of strain-induced martensitic nucleation’, Metall. Mater. Trans. A, 1975, 6A, (4), 791–795.
  • Jacques PJ: ‘Transformation-induced plasticity for high strength formable steels’, Curr. Opin. Solid State Mater. Sci., 2004, 8, (3), 259–265.
  • Jiménez JA, Carsí M, Ruano OA and Frommeyer G: ‘Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel’, Mater. Sci. Eng. A, 2009, A508, (1), 195–199.
  • Matsumura O, Sakuma Y, Ishii Y and Zhao J: ‘Effect of retained austenite on formability of high strength sheet steels’, ISIJ Int., 1992, 32, (10), 1110–1116.
  • Olson GB and Cohen M: ‘A mechanism for the strain-induced nucleation of martensitic transformations’, J. Less Common Met., 1972, 28, (1), 107–118.
  • Sugimoto KI, Kobayashi M and Hashimoto SI: ‘Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel’, Metall. Mater. Trans. A, 1992, 23A, (11), 3085–3091.
  • Avishan B, Garcia-Mateo C, Morales-Rivas L, Yazdani S and Caballero FG: ‘Strengthening and mechanical stability mechanisms in nanostructured bainite’, J. Mater. Sci., 2013, 68, 6121–6132.
  • Muránsky O, Lukáš P, Zrník J and Šittner P: ‘Neutron diffraction analysis of retained austenite stability in Mn–Si steel during plastic deformation’, Phys. B: Condens. Matter, 2006, 385, 587–589.
  • Kammouni A, Saikaly W, Dumont M, Marteau C, Bano X and Charaï A: ‘Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels’, Mater. Sci. Eng. A, 2009, A518, (1), 89–96.
  • Furuhara T, Kikumoto K, Saito H, Sekine T, Ogawa T, Morito S and Maki T: ‘Phase transformation from fine-grained austenite’, ISIJ Int., 2008, 48, (8), 1038–1045.
  • Sugimoto K, Nakano K, Song S and Kashima T: ‘Retained austenite characteristics and stretch-flangeability of high-strength low-alloy TRIP type bainitic sheet steels’, ISIJ Int., 2002, 42, (4), 450–455.
  • Garcia-Mateo C, Caballero FG, Chao J, Capdevila C and Garcia de Andres C: ‘Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels’, J. Mater. Sci., 2009, 44, (17), 4617–4624.
  • Ryu JH, Kim DI, Kim HS, Bhadeshia HKDH and Suh DW: ‘Strain partitioning and mechanical stability of retained austenite’, Scr. Mater., 2010, 63, (3), 297–299.
  • Yu HY, Kai GY and De Jian M: ‘Transformation behavior of retained austenite under different deformation modes for low alloyed TRIP-assisted steels’, Mater. Sci. Eng. A, 2006, A441, (1), 331–335.
  • Sakuma Y, Matsumura O and Takechi H: ‘Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions’, Metall. Mater. Trans. A, 1991, 22A, (2), 489–498.
  • Jeong WC, Matlock DK and Krauss G: ‘Observation of deformation and transformation behavior of retained austenite in a 0.14 C-1.2 Si-1.5Mn steel with ferrite-bainite-austenite structure’, Mater. Sci. Eng. A, 1993, A165, (1), 1–8.
  • Bhadeshia HKDH: Materials algorithms project, available at https://www.msm.cam.ac.uk/map/steel/programs/mucg83.html
  • Garcia-Mateo C, Caballero FG, Miller MK and Jimenez JA: ‘On measurement of carbon content in retained austenite in a nanostructured bainitic steel’, J. Mater. Sci., 2012, 47, (2), 1004–1010.
  • García Mateo C, Caballero FG and Bhadeshia HKDH: ‘Acceleration of low-temperature bainite’, ISIJ Int., 2003, 43, (11), 1821–1825.
  • García Mateo C, Caballero FG, and Bhadeshia HKDH: ‘Development of hard bainite’, ISIJ Int., 2003, 43, (8), 1238–1243.
  • Garcia-Mateo C and Caballero FG: ‘Design of carbide-free low-temperature ultra high strength bainitic steels’, Int. J. Mater. Res., 2007, 98, (2), 137–143.
  • Garcı´a de Andrés C, Bartolomé MJ, Capdevila C, San Martın D, Caballero FG and López V: ‘Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels’, Mater. Charact., 2001, 46, (5), 389–398.
  • Garcı´a de Andrés C, Caballero FG, Capdevila C and San Martı´n D: ‘Revealing austenite grain boundaries by thermal etching: advantages and disadvantages’, Mater. Charact., 2002, 49, (2), 121–127.
  • Chang LC and Bhadeshia HKDH: ‘Austenite films in bainitic microstructures’, Mater. Sci. Technol., 1995, 11, (9), 874–881.
  • Dickson MJ: ‘The significance of texture parameters in phase analysis by X-ray diffraction’, J. Appl. Crystallogr., 1969, 2, (4), 176–180.
  • Rietveld HM: ‘A profile refinement method for nuclear and magnetic structures’, J. Appl. Crystallogr., 1969, 2, (2), 65–71.
  • Dyson DJ and Holmes B: ‘Effect of alloying additions on the lattice parameter of austenite’, J. Iron Steel Inst., 1970, 208, (5), 469–474.
  • Williamson GK and Smallman RE: ‘Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum’, Philos. Mag., 1956, 1, (1), 34–46.
  • Williamson GK and Hall WH: ‘X-ray line broadening from filed aluminium and wolfram’, Acta Metall., 1953, 1, (1), 22–31.
  • MTDATA, Phase Diagrame Software, National Physical Laboratory Teddington, UK, 2004.
  • Sherif MY, Mateo CG, Sourmail T and Bhadeshia H: ‘Stability of retained austenite in TRIP-assisted steels’, Mater. Sci. Technol., 2004, 20, (3), 319–322.
  • Caballero FG, Yen HW, Miller MK, Yang JR, Cornide J and Garcia-Mateo C: ‘Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels’, Acta Mater., 2011, 59, (15), 6117–6123.
  • Caballero FG, Miller MK, Babu SS, and García-Mateo C: ‘Atomic scale observations of bainite transformation in a high carbon high silicon steel’, Acta Mater., 2007, 55, (1), 381–390.
  • Caballero FG, Miller MK, Garcia-Mateo C, Capdevila C and Babu SS: ‘Redistribution of alloying elements during tempering of a nanocrystalline steel’, Acta Mater., 2008, 56, (2), 188–199.
  • Caballero FG, Miller MK and Garcia-Mateo C: ‘Atom probe tomography analysis of precipitation during tempering of a nanostructured bainitic steel’, Metall. Mater. Trans. A, 2011, 42A, (12), 3660–3668.
  • Garcia-Mateo C, Caballero FG, Capdevila C and Andres C: ‘Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry’, Scr. Mater., 2009, 61, (9), 855–858.
  • Cornide J, Miyamoto G, Caballero FG, Furuhara T, Miller MK and García-Mateo C: ‘Distribution of dislocations in nanostructured bainite’, Solid State Phenom., 2011, 172, 117–122.
  • Bhadeshia HKDH and Edmonds DV: ‘The bainite transformation in a silicon steel’, Metall. Mater. Trans. A, 1979, 10A, (7), 895–907.
  • Chang L and Bhadeshia H: ‘Metallographic observations of bainite transformation mechanism’, Mater. Sci. Technol., 1995, 11, (2), 105–108.
  • Avishan B, Garcia-Mateo C, Yazdani S and Caballero FG: ‘Retained austenite thermal stability in a nanostructured bainitic steel’, Mater. Charact., 2013, 81, 105–110.
  • Smith G: ‘The microstructure and yielding behaviour of some Ti steels’, Cambridge, University of Cambridge.
  • Stone H, Peet M, Bhadeshia H, Withers P, Babu SS and Specht ED: ‘Synchrotron X-ray studies of austenite and bainitic ferrite’, Proc. R. Soc. A: Math. Phys. Eng. Sci., 2008, 464, (2092), 1009–1027.
  • Bhadeshia H and Edmonds D: ‘The mechanism of bainite formation in steels’, Acta Metall., 1980, 28, (9), 1265–1273.
  • Furuhara T, Kawata H, Morito S and Maki T: ‘Crystallography of upper bainite in Fe–Ni–C alloys’, Mater. Sci. Eng. A, 2006, A431, (1), 228–236.
  • Singh SB and Bhadeshia HKDH: ‘Estimation of bainite plate-thickness in low-alloy steels’, Mater. Sci. Eng. A, 1998, A245, (1), 72–79.
  • Cornide J, Garcia-Mateo C, Capdevila C and Caballero FG: ‘An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels’, J. Alloys Compd, 2013, 577, 43–47.
  • Bhadeshia HKDH and Honeycombe RWK: ‘Steel, microstructure and properties’; 2006, Amsterdam, Butterworths-Heinemann (Elsevier).
  • Zajac S, Komenda J, Morris P, Dierickx P, Matera S and Penalba Diaz F: ‘Quantitative structure-property relationships for complex bainitic microstructures’, 157; 2005, Luxembourg, European Commission.
  • Matsuzaki A and Bhadeshia H: ‘Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels’, Mater. Sci. Technol., 1999, 15, (5), 518–522.
  • Caballero FG, Miller MK, Garcia-Mateo C, Cornide J and Santofimia MJ: ‘Temperature dependence of carbon supersaturation of ferrite in bainitic steels’, Scr. Mater., 2012, 67, (10), 846–849.
  • Caballero F, Miller M, Garcia-Mateo C and Cornide J: ‘New experimental evidence of the diffusionless transformation nature of bainite’, J. Alloys Compd, 2013, 577, 626–630.
  • Hulme-Smith C, Lonardelli I, Dippel A and Bhadeshia H: ‘Experimental evidence for non-cubic bainitic ferrite’, Scr. Mater., 2013, 69, (5), 409–412.
  • Jang JH, Bhadeshia H and Suh D.-W: ‘Solubility of carbon in tetragonal ferrite in equilibrium with austenite’, Scr. Mater., 2013, 68, (3), 195–198.
  • Langford G and Cohen M: ‘Calculation of cell-size strengthening of wire-drawn iron’, Metall. Mater. Trans. B, 1970, 1B, (5), 1478–1480.
  • Langford G and Cohen M: ‘Strain hardening of iron by severe plastic deformation’, ASM Trans. Q., 1969, 62, (3), 623–638.
  • Nohara K: ‘Composition and grain size dependence of strain-induced martensitic transformation in metastable stainless steel’, J. Iron Steel Inst., 1977, 63, (5), 772–780.
  • Samek L, De Moor E, Penning J and De Cooman BC: ‘Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels’, Metall. Mater. Trans. A, 2006, 37A, (1), 109–124.
  • Hanzaki AZ, Hodgson P and Yue S: ‘Retained austenite characteristics in thermomechanically processed Si-Mn transformation-induced plasticity steels’, Metall. Mater. Trans. A, 1997, 28A, (11), 2405–2414.
  • Wang J and Van Der Zwaag S: ‘Stabilization mechanisms of retained austenite in transformation-induced plasticity steel’, Metall. Mater. Trans. A, 2001, 32A, (6), 1527–1539.
  • Lanzillotto CAN and Pickering FB: ‘Structure–property relationships in dual-phase steels’, Met. Sci., 1982, 16, (8), 371–382.
  • Balliger NK and Gladman T: ‘Work hardening of dual-phase steels’, Met. Sci., 1981, 15, (3), 95–108.
  • Zhang S and Findley K: ‘Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels’, Acta Mater., 2013, 61, (6), 1895–1903.
  • Jacques P, Delannay F and Ladrière J: ‘On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels’, Metall. Mater. Trans. A, 2001, 32A, (11), 2759–2768.
  • Babu S, Vogel S, Garcia-Mateo C, Clausen B, Morales-Rivas L and Caballero F: ‘Microstructure evolution during tensile deformation of a nanostructured bainitic steel’, Scr. Mater., 2013, 69, (11), 777–780.
  • Herrera C, Ponge D and Raabe D: ‘Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability’, Acta Mater., 2011, 59, (11), 4653–4664.
  • peet M: ‘Modelling the hot-deformation of austenite’; 2001, Cambridge, University of Cambridge.
  • Wu R, Li W, Zhou S, Zhong Y, Wang L and Jin X: ‘Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels’, Metall. Mater. Trans. A, 2014, 45A, (4), 1892–1902.
  • Chatterjee S and Bhadeshia H: ‘TRIP-assisted steels: cracking of high-carbon martensite’, Mater. Sci. Technol., 2006, 22, (6), 645–649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.