774
Views
29
CrossRef citations to date
0
Altmetric
Invited Review

Rapid phase transformation under local non-equilibrium diffusion conditions

Pages 1607-1617 | Received 01 Mar 2015, Accepted 29 Mar 2015, Published online: 17 Apr 2015

References

  • Glicksman M. E.: ‘Principles of solidification’; 2011, New York, Springer.
  • Jackson K. A.: ‘Kinetic processes: crystal growth, diffusion, and phase transitions in materials’, 2nd edn; 2010, Weinheim, John Wiley & Sons.
  • Asta M., Beckermann C., Karma A., Kurz W., Napolitano R., Plapp M., Purdy G., Rappaz M. and Trivedi R.: ‘Solidification microstructures and solid-state parallels: recent developments, future directions’, Acta Mater., 2009, 57, 941–971.
  • Liu F. and Yang G. C.: ‘Rapid solidification of highly undercooled bulk liquid superalloy: recent developments, future directions’, Int. Mater. Rev., 2006, 51, 145–170.
  • Serdyukov S. I.: ‘Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics’, Theor. Found. Chem. Eng., 2013, 47, 89–103.
  • Wang G. X. and Prasad V.: ‘Microscale heat and mass transfer and non-equilibrium phase change in rapid solidification’, Mater. Sci. Eng. A, 2000, A292, 142–148.
  • Willnecker R., Herlach D. M. and Feuerbacher B.: ‘Evidence of nonequilibrium processes in rapid solidification of undercooled melts’, Phys. Rev. Lett., 1989, 62, 2707–2710.
  • Willnecker R., Herlach D. M. and Feuerbacher B.: ‘Grain refinement induced by a critical crystal growth velocity in undercooled melts’, Appl. Phys. Lett., 1990, 56, 324–326.
  • Eckler K., Cochrae R. F., Herlach D. M. and Feuerbacher B.: ‘Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys’, Phys. Rev. B, 1992, 45B, (9), 5019–5022.
  • Walder S. and Ryder P. L.: ‘Critical solidification behavior of undercooled Ag–Cu alloys’, J. Appl. Phys., 1993, 74, (10), 6100–6106.
  • Herlach D. M.: ‘Direct measurements of crystal growth velocities in undercooled melts’, Mater. Sci. A, 1994, A179/A180, 147–152.
  • Barth M., Wei B. and Herlach D. M.: ‘Crystal growth in undercooled melts of intermetallic compounds FeSi and CoSi’, Phys. Rev. B, 1995, 51B, 3422–3427.
  • Walder S.: ‘Dendritic growth rate in undercooled, dilute Ti–Ni melts’, Mater. Sci. Eng. A, 1997, A229, 156–162.
  • Herlach D. M.: ‘Metastable materials solidified from undercooled melts’, J. Phys. Condens. Matter, 2001, 13, 7737–7751.
  • Biswas K., Phanikumar G., Herlach H. and Chattopadhyay K.: ‘Non-equilibrium solidification of concentrated Fe–Ge alloys’, Mater. Sci. Eng. A, 2007, A449–A451, 12–17.
  • Biswas K., Phanikumar G., Holland-Moritz D., Herlach H. and Chattopadhyay K.: ‘Disorder trapping and grain refinement during solidification of undercooled Fe–18 at% Ge melts’, Philos. Mag., 2007, 87, 3817–3837.
  • Ahmad R., Cochrane R. F. and Mullis A. M.: ‘Disorder trapping during the solidification of βNi3Ge from its deeply undercooled melt’, J. Mater. Sci., 2012, 47, 2411–2420.
  • Sobolev S. L.: ‘Local-nonequilibrium model for rapid solidification of undercooled melts’, Phys. Lett. A, 1995, 199A, 383–386.
  • Sobolev S. L.: ‘Effects of local-nonequilibrium solute diffusion on rapid solidification of alloys’, Phys. Status Solidi A, 1996, 156A, 293–303.
  • Sobolev S. L.: ‘Rapid solidification under local nonequilibrium condition’, Phys. Rev. E, 1997, 55E, (6), 6845–6854.
  • Sobolev S. L.: ‘Local nonequilibrium diffusion effects on the kinetic phase boundaries in solidification’, Int. J. Non-Equilib. Proc., 1997, 10, 49–58.
  • Sobolev S. L.: ‘Influence of local nonequilibrium on the rapid solidification of binary alloys’, Tech. Phys., 1998, 43, 307–313.
  • Sobolev S. L.: ‘Rapid colloidal solidifications under local nonequilibrium diffusion conditions’, Phys. Lett. A, 2012, 376A, 3563–3566.
  • Sobolev S. L.: ‘Local non-equilibrium diffusion model for solute trapping during rapid solidification’, Acta Mater., 2012, 60, 2711–2718.
  • Sobolev S. L.: ‘An analytical model for local-nonequilibrium solute trapping during rapid solidification’, Trans. Nonferr. Met. Soc. China, 2012, 22, 2749–2755.
  • Sobolev S. L.: ‘An analytical model for complete solute trapping during rapid solidification of binary alloys’, Mater. Lett., 2012, 89, 191–194.
  • Sobolev S. L.: ‘On the transition from diffusion-limited to kinetic-limited regimes of alloy solidification’, Acta Mater., 2013, 61, 7881–7888.
  • Li S. and Sobolev S. L.: ‘Local nonequilibrium solute trapping model for non-planar interface’, J. Cryst. Growth, 2013, 380, 68–71.
  • Sobolev S. L., Poluyanov L. V. and Liu F.: ‘An analytical model for solute diffusion in multicomponent alloy solidification’, J. Cryst. Growth, 2014, 395, 46–54.
  • Sobolev S. L.: ‘Nonlocal diffusion models: application to rapid solidification of binary mixtures’, Int. J. Heat Mass Trans., 2014, 71, 295–302.
  • Sobolev S. L.: ‘Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures’, Phys. Lett. A, 2014, 378A, 475–479.
  • Sobolev S. L.: ‘New interpretation of experimental data on Si–As alloy solidification with planar interface’, Trans. Nonferr. Met. Soc. China, to be published.
  • Brice J. C.: ‘The growth of crystal from the melts’; 1965, Amsterdam, North-Holland.
  • Aziz M. J. and Kaplan T.: ‘Continuous growth model for interface motion during alloy solidification’, Acta Metall., 1998, 36, 2335–2347.
  • Smith P. M. and Aziz M. J.: ‘Solute trapping in aluminium alloys’, Acta Metall. Mater., 1994, 42, 3515–3525.
  • Hillert M.: ‘Solute drag, solute trapping and diffusional dissipation of Gibbs energy’, Acta Mater., 1999, 47, 4481–4505.
  • Jackson K. A., Beatty K. M. and Gudgel K. A.: ‘An analytical model for non-equilibrium segregation during crystallization’, J. Cryst. Growth, 2004, 271, 481–494.
  • Emmerich H., Löwen H., Wittkowski R., Gruhn T., Tóth G. I., Tegze G. and Gránásy L.: ‘Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview’, Adv. Phys., 2012, 61, 665–743.
  • Jou D., Casas-Vazquez J. and Lebon G.: ‘Extended irreversible thermodynamics’; 1996, Berlin, Springer.
  • Sobolev S. L.: ‘Transport processes and travelling waves in systems with local nonequilibrium’, Sov. Phys. Usp., 1991, 34, (3), 217–229.
  • Sobolev S. L.: ‘Local non-equilibrium transport models’, Phys. Usp., 1997, 40, (10), 1043–1053.
  • Nettleton R. E. and Sobolev S. L.: ‘Application of extended thermodynamics to chemical, rheological, and transport processes: a special survey. Part I: approaches and scalar rate processes’, J. Non-Equilibr. Thermodyn., 1995, 20, (3), 205–229.
  • Nettleton R. E. and Sobolev S. L.: ‘Application of extended thermodynamics to chemical, rheological, and transport processes: a special survey. Part II: vector transport processes, shear relaxation and rheology’, J. Non-Equilibr. Thermodyn., 1995, 20, (4), 297–331.
  • Nettleton R. E. and Sobolev S. L.: ‘Application of extended thermodynamics to chemical, rheological, and transport processes: a special survey. Part III: wave phenomena’, J. Non-Equilibr. Thermodyn., 1996, 21, (1), 1–16.
  • Wang H. F., Liu F., Chen Z., Yang G. and Zhou Y.: ‘Analysis of non-equilibrium dendrite growth in a bulk undercooled alloy melt: model and application’, Acta Mater., 2007, 55, 497–506.
  • Wang H. F., Liu F., Chen Z., Yang W., Yang G. and Zhouet Y.: ‘Effect of non-linear liquidus and solidus in undercooled dendrite growth: a comparative study in Ni–0.7 at.% B and Ni–1 at.% Zr systems’, Scr. Mater., 2007, 57, 413–416.
  • Wang H. F., Liu F., Yang W., Chen Z., Yang G. and Zhouet Y.: ‘An extended morphological stability model for a planar interface incorporating the effect of nonlinear liquidus and solidus’, Acta Mater., 2008, 56, 2592–2601.
  • Wang H. F., Liu F., Wang K. and Zhai H. M.: ‘Oscillatory morphological stability for rapid directional solidification: effect of non-linear liquidus and solidus’, Acta Mater., 2011, 59, 5859–5867.
  • Wang H. F., Liu F. and Tan Y. M.: ‘Modeling grain refinement for undercooled single-phase solid-solution alloys’, Acta Mater., 2011, 59, 4787–4797.
  • Tan Y. and Wang H.: ‘Modeling constrained dendrite growth in rapidly directional solidification’, J. Mater. Sci., 2012, 47, 5308–5316.
  • Li S., Zhang J. and Wu P.: ‘A comparative study on migration of a planar interface during solidification of non-dilute alloys’, J. Cryst. Growth, 2010, 312, 982–988.
  • Li S., Zhang J. and Wu P.: ‘Numerical solution and comparison to experiment of solute drag models for binary alloy solidification with a planar phase interface’, Scr. Mater., 2010, 62, 716–719.
  • Wang H., Liu F., Zhai H. and Wang K.: ‘Application of the maximal entropy production principle to rapid solidification: a sharp interface model’, Acta Mater., 2012, 60, 1444–1454.
  • Wang H., Liu F., Yang W., Chen Z., Yang G. and Zhou Y.: ‘Solute trapping model incorporating diffusive interface’, Acta Mater., 2008, 56, 746–753.
  • Wang H., Liu F., Chen Z. and Yang W.: ‘Solute trapping model based on solute drag treatment’, Trans. Nonferr. Met. Soc. China, 2010, 20, 877–881.
  • Wang H. F., Liu F., Yang G. C. and Zhou Y. H.: ‘Modeling the overall solidification kinetics for undercooled single-phase solid-solution alloys. I: model derivation’, Acta Mater., 2010, 58, 5402–5410.
  • Li S., Zhang J. and Wu P.: ‘Analysis for free dendritic growth model applicable to non-dilute alloys’, Metall. Mater. Trans. A, 2012, 43A, 3748–3754.
  • Cook S. J. and Clancy P.: ‘Solute trapping at a rapidly moving solid/liquid interface for a Lennard–Jones alloy’, Mol. Simul., 1990, 5, 99–117.
  • Cook S. J. and Clancy P.: ‘Impurity segregation in Lennard–Jones A/AB heterostructures’, J. Chem. Phys., 1993, 99, 2175–2191.
  • Yang Y., Humadi H., Buta D., Laird B. B., Sun D., Hoyt J. J. and Asta M.: ‘Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts’, Phys. Rev. Lett., 2011, 107, 025505-4.
  • Zhang L., Danilova E. V., Steinbach I., Medvedev D. and Galenko P. K.: ‘Diffuse-interface modeling of solute trapping in rapid solidification: predictions of the hyperbolic phase-field model and parabolic model with finite interface dissipation’, Acta Mater., 2013, 61, 4155–4168.
  • Humadi H., Ofori-Opoku N., Provatas N. and Hout J. J.: ‘Atomistic modeling of solidification phenomena using the phase-field-crystal model’, JOM, 2013, 65, (9), 1103–1110.
  • Humadi H., Hoyt J. J. and Provatas N.: ‘Phase-field-crystal study of solute trapping’, Phys. Rev. E, 2013, 87E, 022404-10.
  • Humadi H., Hoyt J. J. and Provatas N.: ‘Microscopic treatment of solute trapping and drag’, arXiv:1412.0297v1 [cond-mat.mtrl-sci], 2014, available at: http://arxiv.org/abs/1412.0297.
  • Tang S., Yu Y. -M., Wang J., Li J., Wang Z., Guo Y. and Zhou Y.: ‘Phase-field-crystal simulation of nonequilibrium crystal growth’, Phys. Rev. E, 2014, 89E, 012405-6.
  • Hecht U., Granasy L., Pusztai T., Bottger B., Apel M., Witusiewicz V., Ratke L., De Wild J., Froyen L., Camel D., Drevet B., Faivre G., Fries S. G., Legendre B. and Rex S.: ‘Multiphase solidification in multicomponent alloys’, Mater. Sci. Eng. R, 2004, R46, 1–49.
  • Ludwig A.: ‘The interface response-functions in multi-componental alloy solidification’, Physica D, 1998, 124D, 271–284.
  • Hunziker O.: ‘Theory of plane front and dendritic growth in multicomponent alloys’, Acta Mater., 2001, 49, 4191–4203.
  • Ruan Y. and Dai F. P.: ‘Rapid dendrite growth subjected to multi-solute trapping in an undercooled Fe-based quaternary alloy’, Intermetallics, 2012, 25, 80–85.
  • Wang K., Wang H., Liu F. and Zhai H.: ‘Modeling rapid solidification of multi-component concentrated alloys’, Acta Mater., 2013, 61, 1359–1372.
  • Wang K., Wang H. F., Liu F. and Zhai H. M.: ‘Morphological stability analysis for planar interface during rapidly directional solidification of concentrated multi-component alloys’, Acta Mater., 2014, 67, 220–231.
  • Jacot A., Sumida M. and Kurz W.: ‘Solute trapping-free massive transformation at absolute stability’, Acta Mater., 2011, 59, 1716–1724.
  • Hillert M. and Schalin M.: ‘Modeling of solute drag in the massive phase transformation’, Acta Mater., 2000, 48, 461–468.
  • Deville S.: ‘Ice templating, freeze casting: Beyond materials processing’, J. Mater. Res., 2013, 28, (17), 2202–2219.
  • Elliott J. A. W. and Peppin S. S. L.: ‘Particle trapping and banding in rapid colloidal solidification’, Phys. Rev. Lett., 2011, 107, 168301-5.
  • Deville S., Maire E., Bernard-Granger G., Lasalle A., Bogner A., Gauthier C., Leloup J. and Guizard C.: ‘Metastable and unstable cellular solidification of colloidal suspensions’, Nature Mater., 2009, 8, 966–972.
  • Nozawa J., Uda S., Naradate Y., Koizumi H., Fujiwara K., Toyotama A. and Yamanaka J.: ‘Impurity partitioning during colloidal crystallization’, J. Phys. Chem. B, 2013, 117B, 5289–5295.
  • Dullens R. P. A., Aarts D. G. A. L. and Kegel W. K.: ‘Dynamic broadening of the crystal–fluid interface of colloidal hard spheres’, Phys. Rev. Lett., 2006, 97, 228301-4.
  • Roth J., Sonntag S., Karlin J., Paredes C. T., Sartison M., Kraub A. and Trebin H. -R.: ‘Molecular dynamics simulations studies of laser ablation in metals’, AIP Conf. Proc., 2012, 1464, 504–523.
  • Zhigilei L. V., Lin Z., Ivanov D. S., Leveugle E., Duff W. H., Thomas D., Sevilla C. and Guy S. J.: ‘Atomic/molecular-level simulations of laser-materials interactions, Vol. 130, Chap. 3’, in ‘Laser–surface interactions for new materials production: tailoring structure and properties’ ‘Springer series in materials science’ (ed. Miotello A., et al.,., 43–79; 2010, New York, Springer Verlag.
  • Danilov D. and Nestler B.: ‘Phase-field modelling of solute trapping during rapid solidification of a Si–As alloy’, Acta Mater., 2006, 54, 4659–4664.
  • Fan J., Greenwood M., Haataja M. and Provatas N.: ‘Phase-field simulations of velocity selection in rapidly solidified binary alloys’, Phys. Rev. E, 2006, 74E, 031602-7.
  • Tegze G., Granasy L., Toth G. I., Douglas J. F. and Pusztai T.: ‘Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering’, Soft Mater., 2011, 7, 1789–1799.
  • Bhattacharya A., Upadhyay C. S. and Sangal S.: ‘Phase-field model for mixed-mode of growth applied to austenite to ferrite transformation’, Metall. Mater. Trans. A, 2015, 46, 926–936.
  • Wang H., Kuang W., Zhang X. and Liu F.: ‘A hyperbolic phase-field model for rapid solidification of a binary alloy’, J. Mater. Sci., 2015, 50, 1277–1286.
  • Tang S., Yu Y. -M., Wang J., Li J., Wang Z., Guo Y. and Zhou Y.: ‘Phase-field-crystal simulation of nonequilibrium crystal growth’, Phys. Rev. E, 2014, 89E, 012405-6.
  • Li D., Li R. and Zhang P.: ‘A cellular automaton technique for modelling of a binary dendritic growth with convection’, Appl. Math. Model., 2007, 31, 971.
  • Shin Y. H. and Hong C. P.: ‘Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface’, ISIJ Int., 2002, 42, 359–367.
  • Zhu M. F., Lee S. Y. and Hong C. P.: ‘Modified cellular automaton model for the prediction of dendritic growth with melt convection’, Phys. Rev. E, 2004, 69E, 061610-12–061612.
  • Tan W., Bailey N. S. and Shin Y. C.: ‘A novel integrated model combining cellular automata and phase field methods for microstructure evolution during solidification of multi-component and multi-phase alloys’, Comp. Mater. Sci., 2011, 50, 2573–2585.
  • Sobolev S. L.: ‘Discrete model for transfer processes’, Phys. Lett. A, 1992, 163A, 101–103.
  • Sobolev S. L.: ‘Two-temperature discrete model for nonlocal heat conduction’, J. Phys. III France, 1993, 3, 2261–2269.
  • Yi H. L., Ghosh S. K., Liu W. J., Lee K. Y. and Bhadeshia H. K. D. H.: ‘Non-equilibrium solidification and ferrite in δ-TRIP steel’, Mater. Sci. Technol., 2010, 26, 817–823.
  • Zhang K., Liu F., Xu J. F. and Yang G. C.: ‘Microstructure refinement of Fe40Ni40B20 alloy in non-equilibrium solidification: possibility of nanostructure formation’, Mater. Sci. Technol., 2012, 28, 844–849.
  • Castanho M. A. P., Goulart P. R., Brito C., Spinelli J. E., Cheung N. and Garcia A.: ‘Garcia Steady and unsteady state peritectic solidification’, Mater. Sci. Technol., 2015, 31, 105–114.
  • Guan K., Jia L., Chen X., Weng J., Ding F. and Zhang H.: ‘Synergy of Cr concentration and withdraw rate on microstructure evolution of directionally solidified Nb–14Si–24Ti alloys’, Mater. Sci. Technol., 2014, 30, 1359–1366.
  • Xu X. L., Chen Y. Z. and Liu F.: ‘Study of microstrain in rapidly solidified structures of hypercooled Co80Pd20 alloys’, Mater. Sci. Technol., 2013, 29, 117–120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.