2,156
Views
18
CrossRef citations to date
0
Altmetric
Critical assessment

Critical Assessment 15: Science of deformation and failure mechanisms in twinning induced plasticity steels

, &
Pages 1265-1270 | Received 26 May 2015, Accepted 27 May 2015, Published online: 17 Jun 2015

References

  • Bouaziz O., Allain S., Scott C. P., Cugy P. and Barbier D.: ‘High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships’, Curr. Opin. Solid State Mater. Sci., 2011, 15, (4), 141–168.
  • Lee Y.-K.: ‘Microstructural evolution during plastic deformation of twinning-induced plasticity steels’, Scr. Mater., 2012, 66, (12), 1002–1006.
  • De Cooman B. C., Kwon O. and Chin K. G.: ‘State-of-the-knowledge on TWIP steel’, Mater. Sci. Technol., 2012, 28, (5), 513–527.
  • Remy L.: ‘Kinetics of f.c.c. deformation twinning and its relationship to stress-strain behaviour’, Acta Metall., 1978, 26, (3), 443–451.
  • Kim T. W. and Kim Y. G.: ‘Properties of austenitic Fe-25Mn-1Al-0·3C alloy for automotive structural applications’, Mater. Sci. Eng. A, 1993, A160, (2), 13–15.
  • Gutierrez-Urrutia I. and Raabe D.: ‘Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel’, Acta Mater., 2012, 60, (16), 5791–5802.
  • Yang P., Xie Q., Meng L., Ding H. and Tang Z.: ‘Dependence of deformation twinning on grain orientation in a high manganese steel’, Scr. Mater., 2006, 55, (7), 629–631.
  • Meng L., Yang P., Xie Q., Ding H. and Tang Z.: ‘Dependence of deformation twinning on grain orientation in compressed high manganese steels’, Scr. Mater., 2007, 56, (11), 931–934.
  • Kang S., Jung Y.-S., Yoo B.-G., Jang J.-I. and Lee Y.-K.: ‘Orientation-dependent indentation modulus and yielding in a high Mn twinning-induced plasticity steel’, Mater. Sci. Eng. A, 2012, A532, 500–504.
  • Gutierrez-Urrutia I. and Raabe D.: ‘Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.% Mn-0·6wt.% C TWIP steel observed by electron channeling contrast imaging’, Acta Mater., 2011, 59, (16), 6449–6462.
  • Yang H. K., Zhang Z. J. and Zhang Z. F.: ‘Comparison of twinning evolution with work hardening ability in twinning-induced plasticity steel under different strain rates’, Mater. Sci. Eng. A, 2015, A622, 184–188.
  • Jung Y.-S., Kang S., Jeong K., Jung J.-G. and Lee Y.-K.: ‘The effects of N on the microstructures and tensile properties of Fe-15Mn-0·6C-2Cr-xN twinning-induced plasticity steels’, Acta Mater., 2013, 61, (17), 6541–6548.
  • Barbier D., Gey N., Allain S., Bozzolo N. and Humbert M.: ‘Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions’, Mater. Sci. Eng. A, 2009, A500, (1-2), 196–206.
  • Bhadeshia H. K. D. H.: ‘Worked examples in the geometry of crystals’, 2001, London, The Institute of Metals.
  • Kelly A. and Nicholson R. B.: ‘Strengthening methods in crystals’, 261–329; 1971, Elsevier.
  • Kelly P. M. and Pollard G.: ‘The movement of slip dislocations in internally twinned martensite’, Acta Metall., 1969, 17, (8), 1005–1008.
  • Zhu Y. T., Liao X. Z. and Wu X. L.: ‘Deformation twinning in nanocrystalline materials’, Prog. Mater. Sci., 2012, 57, (1), 1–62.
  • Christian J. W. and Mahajan S.: ‘Deformation twinning’, Prog. Mater. Sci., 1995, 39, 1–157.
  • Bouaziz O., Allain S. and Scott C.: ‘Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels’, Scr. Mater., 2008, 58, (6), 484–487.
  • Gilsevillano J.: ‘An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel’, Scr. Mater., 2009, 60, (5), 336–339.
  • Bouaziz O.: ‘Strain-hardening of twinning-induced plasticity steels’, Scr. Mater., 2012, 66, (12), 982–985.
  • Idrissi H., Renard K., Schryvers D. and Jacques P. J.: ‘On the relationship between the twin internal structure and the work-hardening rate of TWIP steels’, Scr. Mater., 2010, 63, (10), 961–964.
  • Kocks U. and Mecking H.: ‘Physics and phenomenology of strain hardening - the FCC case’, Prog. Mater. Sci., 2003, 48, 171–273.
  • Bouaziz O. and Guelton N.: ‘Modelling of TWIP effect on work-hardening’, Mater. Sci. Eng. A, 2001, A319-A321, 246–249.
  • Karaman I., Sehitoglu H., Beaudoin A., Chumlyakov Y., Maier H. and Tome C.: ‘Modeling the deformation behavior of hadfield steel single and polycrystals due to twinning and slip’, Acta Mater., 2000, 48, 2031–2047.
  • Steinmetz D. R., Jäpel T., Wietbrock B., Eisenlohr P., Gutierrez-Urrutia I., Saeed-Akbari A., Hickel T., Roters F. and Raabe D.: ‘Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments’, Acta Mater., 2013, 61, (2), 494–510.
  • Allain S., Chateau J. P. and Bouaziz O.: ‘A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel’, Mater. Sci. Eng. A, 2004, A387-A389, 143–147.
  • Scott C. P., Remy B., Collet J. L., Cael A., Bao C., Danoix F., Malard B. and Curfs C.: ‘Precipitation strengthening in high manganese austenitic TWIP steels’, 12; 2011, Munich, Hanser.
  • Liang Z. Y., Wang X., Huang W. and Huang M. X.: ‘Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel’, Acta Mater., 2015, 88, 170–179.
  • Dini G., Ueji R., Najafizadeh A. and Monir-Vaghefi S. M.: ‘Flow stress analysis of TWIP steel via the XRD measurement of dislocation density’, Mater. Sci. Eng. A, 2010, A527, (10-11), 2759–2763.
  • Jeong J. S., Koo Y. M., Jeong I. K., Kim S. K. and Kwon S. K.: ‘Micro-structural study of high-Mn TWIP steels using diffraction profile analysis’, Mater. Sci. Eng. A, 2011, A530, 128–134.
  • Shterner V., Molotnikov A., Timokhina I., Estrin Y. and Beladi H.: ‘A constitutive model of the deformation behaviour of twinning induced plasticity (TWIP) steel at different temperatures’, Mater. Sci. Eng. A, 2014, A613, 224–231.
  • Kim J., Estrin Y., Beladi H., Timokhina I., Chin K.-G., Kim S.-K. and De Cooman B. C.: ‘Constitutive modeling of the tensile behavior of Al-TWIP steel’, Metall. Mater. Trans. A, 2011, 43A, (2), 479–490.
  • Byun T. S.: ‘On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels’, Acta Mater., 2003, 51, (11), 3063–3071.
  • Mahajan S. and Chin G. Y.: ‘Formation of deformation twins in fcc crystals’, Acta Metall., 1973, 21, (10), 1353–1363.
  • Mori T. and Fujita H.: ‘Dislocation reactions during deformation twinning in Cu-11 at percent-Al single-crystals’, Acta Metall., 1980, 28, (6), 771–776.
  • Cohen J. and Weertman J.: Acta Metall., 1963, 11, 996.
  • Allain S., Chateau J. P., Bouaziz O., Migot S. and Guelton N.: ‘Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys’, Mater. Sci. Eng. A, 2004, A387-A389, 158–162.
  • Hirth J. P. and Lothe J.: ‘Theory of dislocation’, 1982, New York, John Wiley & Sons.
  • Idrissi H., Renard K., Ryelandt L., Schryvers D. and Jacques P. J.: ‘On the mechanism of twin formation in Fe-Mn-C TWIP steels’, Acta Mater., 2010, 58, (7), 2464–2476.
  • Puschl W.: ‘Models for dislocation cross-slip in close-packed crystal structures a critical review’, Prog. Mater. Sci., 2002, 47, (4), 415–461.
  • Gutierrez-Urrutia I., Zaefferer S. and Raabe D.: ‘The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.% Mn-0·6wt.% C TWIP steel’, Mater. Sci. Eng. A, 2010, A527, (15), 3552–3560.
  • Vercammen S., Blanpain B., De Cooman B. C. and Wollants P.: ‘Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel: the importance of deformation twinning’, Acta Mater., 2004, 52, (7), 2005–2012.
  • Shen Y. F., Qiu C. H., Wang L., Sun X., Zhao X. M. and Zuo L.: ‘Effects of cold rolling on microstructure and mechanical properties of Fe-30Mn-3Si-4Al-0·093C TWIP steel’, Mater. Sci. Eng. A, 2013, A561, 329–337.
  • Zaefferer S. and Elhami N.-N.: ‘Theory and application of electron channelling contrast imaging under controlled diffraction conditions’, Acta Mater., 2014, 75, 20–50.
  • Karaman I., Sehitoglu H., Gall K., Chumlyakov Y. I. and Maier H. J.: ‘Deformation of single crystal Hadfield steel by twinning and slip’, Acta Mater., 2000, 48, 1345–1359.
  • Lee S.-J., Kim J., Kane S. N. and Cooman B. C. D.: ‘On the origin of dynamic strain aging in twinning-induced plasticity steels’, Acta Mater., 2011, 59, (17), 6809–6819.
  • Picu R. C.: ‘A mechanism for the negative strain-rate sensitivity of dilute solid solutions’, Acta Mater., 2004, 52, (12), 3447–3458.
  • Kim J.-K., Chen L., Kim H.-S., Kim S.-K., Estrin Y. and De Cooman B. C.: ‘On the tensile behavior of high-manganese twinning-induced plasticity steel’, Metall. Mater. Trans. A, 2009, 40A, (13), 3147–3158.
  • Min J., Lin J. and Sun B.: ‘Effect of strain rate on spatio-temporal behavior of Portevin-Le Châtelier bands in a twinning induced plasticity steel’, Mech. Mater., 2014, 68, 164–175.
  • Chen L., Kim H. S., Kim S. K. and De Cooman B. C.: ‘Localized deformation due to Portevin-LeChatelier effect in 18Mn-0·6C TWIP austenite steel’, ISIJ Int., 2007, 47, 1804–1812.
  • Renard K., Ryelandt S. and Jacques P. J.: ‘Characterisation of the Portevin-Le Châtelier effect affecting an austenitic TWIP steel based on digital image correlation’, Mater. Sci. Eng. A, 2010, A527, (12), 2969–2977.
  • Zavattieri P. D., Savic V., Hector Jr L. G., Fekete J. R., Tong W. and Xuan Y.: ‘Spatio-temporal characteristics of the Portevin-Le Châtelier effect in austenitic steel with twinning induced plasticity’, Int. J. Plast., 2009, 25, (12), 2298–2330.
  • Canadinc D., Efstathiou C. and Sehitoglu H.: ‘On the negative strain rate sensitivity of Hadfield steel’, Scr. Mater., 2008, 59, (10), 1103–1106.
  • Kim J. G., Hong S., Anjabin N., Park B. H., Kim S. K., Chin K. G., Lee S. and Kim H. S.: ‘Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing’, Mater. Sci. Eng. A, 2015, A633, 136–143.
  • Messerschmidt (Ed.) U.: ‘Dislocation dynamics during plastic deformation’, (ed. Hull R. et al.), ; 2010, New York, Springer.
  • Grässel O., Krüger L., Frommeyer G. and Meyer L. W.: ‘High strength Fe-Mn-(AlSi) TRIP/TWIP steels development-properties-application’, Int. J. Plast., 2000, 16, (10-11), 1391–1409.
  • Rahman K. M., Vorontsov V. A. and Dye D.: ‘The dynamic behaviour of a twinning induced plasticity steel’, Mater. Sci. Eng. A, 2014, A589, 252–261.
  • Xu S., Ruan D., Beynon J. H. and Rong Y.: ‘Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading’, Mater. Sci. Eng. A, 2013, A573, 132–140.
  • Curtze S. and Kuokkala V. T.: ‘Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate’, Acta Mater., 2010, 58, (15), 5129–5141.
  • Allain S., Bouaziz O. and Chateau J. P.: ‘Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature’, Scr. Mater., 2010, 62, (7), 500–503.
  • Liang Z. Y., Huang W. and Huang M. X.: ‘Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel’, Mater. Sci. Eng. A, 2015, A628, 84–88.
  • Jin J. E. and Lee Y. K.: ‘Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel’, Acta Mater., 2012, 60, (4), 1680–1688.
  • Allain S., ; 2004;. PhD thesis, INPL, Nancy, France..
  • Dastur Y. N. and Leslie W. C.: ‘Mechanism of work hardening in Hadfield manganese steel’, MTA, 1981, 12, (5), 749–759.
  • Lee S., Estrin Y. and De Cooman B. C.: ‘Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0·6 pct C TWIP steel’, Metall. Mater. Trans. A, 2013, 45A, (2), 717–730.
  • Kim J. K., Estrin Y., Beladi H., Kim S. K., Chin K. G. and De Cooman B. C.: ‘Constitutive modeling of TWIP steel in uni-axial tension’, Mater. Sci. Forum, 2010, 654-656, 270–273.
  • Bouaziz O., Zurob H., Chehab B., embury J. D., Allain S. and Huang M.: ‘Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels’, Mater. Sci. Technol., 2011, 27, (3), 707–709.
  • Jung I.-C. and De Cooman B. C.: ‘Temperature dependence of the flow stress of Fe-18Mn-0·6C-xAl twinning-induced plasticity steel’, Acta Mater., 2013, 61, (18), 6724–6735.
  • Yen H.-W., Huang M., Scott C. P. and Yang J.-R.: ‘Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel’, Scr. Mater., 2012, 66, (12), 1018–1023.
  • Saeed-Akbari A., Schwedt A. and Bleck W.: ‘Low stacking fault energy steels in the context of manganese-rich iron-based alloys’, Scr. Mater., 2012, 66, (12), 1024–1029.
  • Dumay A., Chateau J. P., Allain S., Migot S. and Bouaziz O.: ‘Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel’, Mater. Sci. Eng. A, 2008, A483-A484, 184–187.
  • Nakano J. and Jacques P. J.: ‘Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems’, Calphad, 2010, 34, (2), 167–175.
  • Remy L. and Pineau A.: ‘Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe-Mn-Cr-C system. Mater’, Sci. Eng., 1977, 28, (1), 99–107.
  • Park K.-T., Jin K. G., Han S. H., Hwang S. W., Choi K. and Lee C. S.: ‘Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition’, Mater. Sci. Eng. A, 2010, A527, (16-17), 3651–3661.
  • Frommeyer G., Brux U. and Neumann P.: ‘Super-ductile and high-strength manganese-TRIP, TWIP steels for high energy absorption purposes’, ISIJ Int., 2003, 43, 438–446.
  • Martin S., Wolf S., Martin U., Krüger L. and Rafaja D.: ‘Rafaja. Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature’, Metall. Mater. Trans. A, to be published.
  • Oh B. W., Cho S. J., Kim Y. G., Kim Y. P. and Hong W. S.: ‘Effect of aluminium on deformation mode and mechanical properties of austenitic Fe–Mn–Cr–Al–C alloys’, Mater. Sci. Eng. A, 1995, A197, 147–156.
  • Jung J. E., Park J., Kim J.-S., Jeon J. B., Kim S. K. and Chang Y. W.: ‘Temperature effect on twin formation kinetics and deformation behavior of Fe-18Mn-0·6C TWIP steel’, Met. Mater. Int., 2014, 20, (1), 27–34.
  • Allain S., Chateau J. P., Dahmoun D. and Bouaziz O.: ‘Modeling of mechanical twinning in a high manganese content austenitic steel’, Mater. Sci. Eng. A, 2004, A387-A389, 272–276.
  • Meyers M. A., Vohringer O. and Lubarda V. A.: ‘The onset of twinning in metals - a constitutive description’, Acta Mater., 2001, 49, 4025–4039.
  • Rahman K. M., Vorontsov V. A. and Dye D.: ‘The effect of grain size on the twin initiation stress in a TWIP steel’, Acta Mater., 2015, 89, 247–257.
  • Friedel J.: ‘Dislocations’, 1964, Oxford, Pergamon Press Ltd.
  • Huang M., Bouaziz O., Barbier D. and Allain S.: ‘Modelling the effect of carbon on deformation behaviour of twinning induced plasticity steels’, J. Mater. Sci., 2011, 46, (23), 7410–7414.
  • Abe T., Tsukada K., Tagawa H. and Kozasu I.: ‘Grain boundary segregation behavior of phosphorus and carbon under equilibrium and non-equilibrium conditions in austenitic region of steels’, ISIJ Int., 1990, 30, (6), 444–450.
  • Fabrègue D., Landron C., Bouaziz O. and Maire E.: ‘Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography’, Mater. Sci. Eng. A, 2013, A579, 92–98.
  • Lorthios J., Nguyen F., Gourgues A. F., Morgeneyer T. F. and Cugy P.: ‘Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography’, Scr. Mater., 2010, 63, (12), 1220–1223.
  • Xu L., Barlat F. and Lee M. G.: ‘Hole expansion of twinning-induced plasticity steel’, Scr. Mater., 2012, 66, (12), 1012–1017.
  • Koyama M., Akiyama E., Tsuzaki K. and Raabe D.: ‘Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging’, Acta Mater., 2013, 61, (12), 4607–4618.
  • Chun Y. S., Park K.-T. and Lee C. S.: ‘Delayed static failure of twinning-induced plasticity steels’, Scr. Mater., 2012, 66, (12), 960–965.
  • Niendorf T., Rubitschek F., Maier H. J., Niendorf J., Richard H. A. and Frehn A.: ‘Fatigue crack growth - microstructure relationships in a high-manganese austenitic TWIP steel’, Mater. Sci. Eng. A, 2010, A527, (9), 2412–2417.
  • Roa J. J., Fargas G., Calvo J., Jiménez-Piqué E. and Mateo A.: ‘Plastic deformation and damage induced by fatigue in TWIP steels’, Mater. Sci. Eng. A, 2015, A628, 410–418.
  • Jo S. Y., Han J., Kang J.-H., Kang S., Lee S. and Lee Y.-K.: ‘Relationship between grain size and ductile-to-brittle transition at room temperature in Fe-18Mn-0·6C-1·5Si twinning-induced plasticity steel’, J. Alloys Compds, 2015, 627, 374–382.
  • Ueda T., Helfen L. and Morgeneyer T. F.: ‘In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson-Tvergaard-Needleman-type simulations’, Acta Mater., 2014, 78, 254–270.
  • Bonora N., Gentile D., Pirondi A. and Newaz G.: ‘Ductile damage evolution under triaxial state of stress: theory and experiments’, Int. J. Plast., 2005, 21, (5), 981–1007.
  • Abbasi M., Kheirandish S., Kharrazi Y. and Hejazi J.: ‘The fracture and plastic deformation of aluminum alloyed Hadfield steels’, Mater. Sci. Eng. A, 2009, A513-A514, 72–76.
  • Bayraktar E., Khalid F. A. and Levaillant C.: ‘Deformation and fracture behaviour of high manganese austenitic steel’, J. Mater. Process. Technol., 2004, 147, (2), 145–154.
  • Baik S.-I., Ahn T.-Y., Hong W.-P., Jung Y.-S., Lee Y.-K. and Kim Y.-W.: ‘In situ observations of transgranular crack propagation in high-manganese steel’, Scr. Mater., 2015, 100, 32–35.
  • Fang X., Zhang L., Liu W., Shu K., Fang Y., Zeng Y., Meng L. and Liu J.: ‘Cracking in a Fe-25Mn-3Si-3Al steel’, Mater. Res. Lett., 2014, 2, 204–208.
  • Faccoli M., Cornacchia C., Gelfi M., Panvini A. and Roberti R.: ‘Notch ductility of steels for automotive components’, Eng. Fract. Mech., 2014, 127, 181–193.
  • Hamada A. S., Karjalainen L. P. and Puustinen J.: ‘Fatigue behavior of high-Mn TWIP steels’, Mater. Sci. Eng. A, 2009, A517, (1-2), 68–77.
  • Hamada A. S., Karjalainen L. P., Ferraiuolo A., Gil Sevillano J., de las Cuevas F., Pratolongo G. and Reis M.: ‘Fatigue behavior of four high-Mn twinning induced plasticity effect steels’, Metall. Mater. Trans. A, 2010, 41A, (5), 1102–1108.
  • Hamada A. S. and Karjalainen L. P.: ‘High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels’, Mater. Sci. Eng. A, 2010, A527, (21-22), 5715–5722.
  • Niendorf T., Lotze C., Canadinc D., Frehn A. and Maier H. J.: ‘The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel’, Mater. Sci. Eng. A, 2009, A499, (1-2), 518–524.
  • Boardman B.: ‘Fatigue resistance of steels’, (ed. ASM International Handbook Committee., 673–688; 1990, Materials Park, OH, ASM International.
  • Karjalainen L. P., Hamada A., Misra R. D. K. and Porter D. A.: ‘Some aspects of the cyclic behavior of twinning-induced plasticity steels’, Scr. Mater., 2012, 66, (12), 1034–1039.
  • Niendorf T., Rubitschek F., Maier H. J., Niendorf J., Richard H. A. and Frehn A.: ‘Fatigue crack growth - microstructure relationships in a high-manganese austenitic TWIP steel’, Mater. Sci. Eng. A, 2010, A527, (9), 2412–2417.
  • Lambers H. G., Rüsing C. J., Niendorf T., Geissler D., Freudenberger J. and Maier H. J.: ‘On the low-cycle fatigue response of pre-strained austenitic Fe61Mn24Ni6·5Cr8·5 alloy showing TWIP effect’, Int. J. Fatigue, 2012, 40, 51–60.
  • Kim Y. W., Kim G., Hong S.-G. and Lee C. S.: ‘Energy-based approach to predict the fatigue life behavior of pre-strained Fe-18Mn TWIP steel’, Mater. Sci. Eng. A, 2011, A528, (13-14), 4696–4702.
  • Pham M. S., Solenthaler C., Janssens K. G. F. and Holdsworth S. R.: ‘Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel’, Mater. Sci. Eng. A, 2011, A528, (7-8), 3261–3269.
  • Takahashi J., Kobayashi Y., Ueda M., Miyazaki T. and Kawakami K.: ‘Nanoscale characterisation of rolling contact wear surface of pearlitic steel’, Mater. Sci. Technol., 2013, 29, (10), 1212–1218.
  • Zhu T. T., Bushby A. J. and Dunstan D. J.: ‘Materials mechanical size effects: a review’, Mater. Technol., 2008, 23, (4), 193–209.
  • Wu S. Z., Yen H. W., Huang M. X. and Ngan A. H. W.: ‘Deformation twinning in submicron and micron pillars of twinning-induced plasticity steel’, Scr. Mater., 2012, 67, (7-8), 641–644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.