128
Views
27
CrossRef citations to date
0
Altmetric
Technology Vision

Promise of multiobjective genetic algorithms in coating performance formulation

References

  • Datta S. and Chattopadhyay P. P.: ‘Soft computing techniques in advancement of structural metals’, Int. Mater. Rev., DOI 10.1179/1743280413Y.0000000021.
  • Paszkowicz W.: ‘Genetic algorithms, a nature-inspired tool: a survey of applications in materials science and related fields: part II’, Mater. Manuf. Processes, 2013, 28, 708–725.
  • Chakraborti N.: ‘Genetic algorithms in materials design and processing’, Int. Mater. Rev., 2004, 49, 246–260.
  • Mitra K.: ‘Genetic algorithms in polymeric material production, design, processing and other applications: a review’, Int. Mater. Rev., 2008, 53, 275–297.
  • Sharma T. K., Pant M. and Singh M.: ‘Nature-inspired metaheuristic techniques as powerful optimizers in the paper industry’, Mater. Manuf. Processes, 2013, 28, 788–802.
  • Chakraborti N., Kumar B. S., Babu V. S., Moitra S. and Mukhopadhyay A.: ‘Optimizing surface profiles during hot rolling: a genetic algorithms based multi-objective optimization’, Comput. Mater. Sci., 2006, 37, 159–165.
  • Klancnik S., Brezocnik M., Balic J. and Karabegovic I.: ‘Programming of CNC milling machines using particle swarm optimization’, Mater. Manuf. Processes, 2013, 28, 811–815.
  • Chakraborti N., Shekhar A., Singhal A., Chowdhury S. and Sripriya R.: ‘Fluid flow in hydrocyclones optimized through multi-objective genetic algorithms’, Inverse Prob. Sci. Eng., 2008, 16, 1023–1046
  • Ganguly S., Kong C. S., Broderick S. R. and Rajan K.: ‘Informatics-based uncertainty quantification in the design of inorganic scintillators’, Mater. Manuf. Processes, 2013, 28, 726–732
  • Jain A., Castelli I. E., Hautier G., Bailey D. H. and Jacobsen K. W.: ‘Performance of genetic algorithms in search for water splitting perovskites’, J. Mater. Sci., 2013, 48, 6519–6534
  • Nandi AK., Deb K. and Datta S.: ‘Genetic algorithm-based design and development of particle-reinforced silicone rubber for soft tooling process’, Mater. Manuf. Processes, 2013, 28, 753–760.
  • Chakraborti N., De P. S. and Prasad R.: Z. Metallkd, 1999, 90, 508–513.
  • Mitra K.: ‘Evolutionary surrogate optimization of an industrial sintering process’, Mater. Manuf. Processes, 2013, 28, 768–775.
  • Chakraborti N., De P. S. and Prasad R.: ‘Genetic algorithms based structure calculations for hydrogenated silicon clusters’, Mater. Lett., 2002, 55, 20–26.
  • Kovacic M., Rozej U. and Brezocnik M.: ‘Genetic algorithm rolling mill layout optimization’, Mater. Manuf. Processes, 2013, 28, 783–787.
  • Salimi M. and Sahebifard M. M.: ‘Optimization of strip profile and flatness using hybrid neural-GA algorithm’, Steel Res. Int., 2010, 81, 154–157.
  • Tancret F.: ‘Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys’, Modell. Simul. Mater. Sci. Eng., 2013, 21, 045013.
  • Tancret F.: ‘Computational thermodynamics and genetic algorithms to design affordable gamma'-strengthened nickel-iron based superalloys’, Modell. Simul. Mater. Sci. Eng., 2012, 20, 045012.
  • Sun X. M., Zhao G. Q., Zhang C. S., Guan Y. J. and Gao A. J.: ‘Optimal design of second-step welding chamber for a condenser tube extrusion die based on the response surface method and the genetic algorithm’, Mater. Manuf. Processes, 2013, 28, 823–834.
  • Carstensen N. O., Dieterich J. M. and Hartke B.: ‘Design of optimally switchable molecules by genetic algorithms’, Phys. Chem. Chem. Phys., 2011, 13, 2903–2910.
  • Cheung T., Cheung N., Tobar C. M. T., Mei P. R. and Garcia A.: ‘Zone refining of tin: optimization of zone length by a genetic algorithm’, Mater. Manuf. Processes, 2013, 28, 746–752.
  • Coello Coello C. A., Van Veldhuizen D. A. and Lamont G. B.: ‘Evolutionary algorithms for solving multi-objective problems’; 2002, New York, Kluwer Academic Publishers.
  • Tutum C. C., Deb K. and Hattel J. H.: ‘Multi-criteria optimization in friction stir welding using a thermal model with prescribed material flow’, Mater. Manuf. Processes, 2013, 28, 816–822.
  • Kumar A., Chakrabarti D. and Chakraborti N.: ‘Data-driven pareto optimization for microalloyed steels using genetic algorithms’, Steel Res. Int., 2012, 83, 169–174.
  • Bansal A., Barman A., Ghosh S. and Chakraborti N.: ‘Designing Cu-Zr glass using multiobjective genetic algorithm and evolutionary neural network metamodels-based classical molecular dynamics simulation’, Mater. Manuf. Processes, 2013, 28, 733–740.
  • Li Y., Chen Y. Y., Chen C. Y., Shen C. H., Cheng H. W., Lo I. H. and Chen C. N.: ‘Device simulation-based multiobjective evolutionary algorithm for process optimization of semiconductor solar cells’, Mater. Manuf. Processes, 2013, 28, 761–767.
  • Zhang Q. and Mahfouf M.: ‘A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels’, Eng. Appl. Artif. Intell., 2010, 23, 660–675
  • Datta S., Zhang Q., Sultana N. and Mahfouf M.: ‘Optimal design of titanium alloys for prosthetic applications using a multiobjective evolutionary algorithm’, Mater. Manuf. Processes, 2013, 28, 741–745.
  • Yegorov-Egorov I. N., Dulikravich G. S. and Colaço M. J.: ‘Optimizing chemistry of bulk metallic glasses for improved thermal stability’, Modell. Simul. Mater. Sci. Eng., 2008, 16, 075010.
  • Ulutan D. and Oezel T.: ‘Multiobjective optimization of experimental and simulated residual stresses in turning of nickel-alloy IN100’, Mater. Manuf. Processes, 2013, 28, 835–841.
  • Gujarathi A. M., Motagamwala A. H. and Babu B. V.: ‘Multiobjective optimization of industrial naphtha cracker for production of ethylene and propylene’, Mater. Manuf. Processes, 2013, 28, 803–810.
  • Pettersson F., Chakraborti N. and Saxén H.: ‘A genetic algorithms based multi-objective neural net applied to noisy blast furnace data’, Appl. Soft Comput., 2007, 7, 387–397.
  • Mondal D. N., Sarangi K., Pettersson F., K Sen P., Saxén H. and Chakraborti N.: ‘Cu–Zn separation by supported liquid membrane analyzed through multi-objective genetic algorithms’, Hydrometallurgy, 2011, 107, 112–123.
  • Giri B. K., Pettersson F., Saxén H. and Chakraborti N.: ‘Genetic programming evolved through bi-objective genetic algorithms applied to a blast furnace’, Mater. Manuf. Processes., 2013, 28, 776–782.
  • Giri B. K., Hakanen J., Miettinen K. and Chakraborti N.: ‘Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives’, Appl. Soft Comput., 2013, 13, 2613–2623.
  • Haile J. M.: ‘Molecular dynamics simulation elementary methods’; 2001, New York, John Wiley & Sons.
  • Bhattacharya B., Kumar G. R. D., Agarwal A., Erkoç S., Singh A. and Chakraborti N.: ‘Analyzing Fe-Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms’, Comput. Mater. Sci., 2009, 46, 821–827.
  • Rajak P., Tewary U., Das S., Bhattacharya B. and Chakraborti N.: ‘Phases in Zn-coated Fe analyzed through an evolutionary meta-model and multi-objective genetic algorithms’, Comput. Mater. Sci., 2011, 50, 2502–2516.
  • Rajak P., Ghosh S., Bhattacharya B. and Chakraborti N.: ‘Pareto-optimal analysis of Zn-coated Fe in the presence of dislocations using genetic algorithms’, Comput. Mater. Sci., 2012, 62, 266–271.
  • Chakraborti N.: Lecture at POSTECH, Korea, 2013. http://youtu.be/CRtB1skfwvo
  • Marder A. R.: ‘The metallurgy of zinc-coated steel’, Prog. Mater. Sci., 2000, 45, 191–271.
  • Sola A., Bellucci D., Cannillo V. and Cattini A.: ‘Bioactive glass coatings: a review’, Surf. Eng., 2011, 27, 560–572.
  • LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.