311
Views
19
CrossRef citations to date
0
Altmetric
Research Papers

Part I. Mechanism of oxidation of Cr2AlC films in temperature range 700–1200°C

, &
Pages 373-385 | Received 13 Aug 2014, Accepted 02 Nov 2014, Published online: 14 Nov 2014

Reference

  • Hindam H and Whittle DP: ‘Microstructure, adhesion and growth kinetics of protective scales on metals and alloys’, Oxid. Met., 1982, 18, 245–284.
  • Kofstad P: ‘High temperature corrosion’, 25–38; 1988, New York, Elsevier Applied Science.
  • Stott FH, Wood GC and Stringer J: ‘The influence of alloying elements on the development and maintenance of protective scales’, Oxid. Met., 1995, 44, 113–145.
  • Zimmermann D: ‘Einfluss der Oberflächenorientierung und der chemischen Zusammensetzung auf das Oxidationsverhalten von beta-NiAl Einkristallen’, PhD thesis, Fakultät für Chemie, Stuttgart, Germany, 2001.
  • DeMasi – Marcin JT and Gupta DK: ‘Protective coatings in the gas turbine engine’, Surf. Coat. Technol., 1994, 68/69, 1–9.
  • Kim MT, Heo NH, Shin JH and Kim CY: ‘Simultaneous chromizing and aluminizing using chromium oxide and aluminium: (I) on low alloy steel’, Surf. Coat. Technol., 2000, 123, 227–230.
  • Wang QM, et al.: ‘Improving the high-temperature oxidation resistance of a β-γ TiAl alloy by a Cr2AlC coating’, Corros. Sci., 2010, 52, (11), 3793–3802.
  • Lee DB, Nguyen TD and Park SW: ‘Long-time oxidation of Cr2AlC between 700 and 1000°C in air’, Oxid. Met., 2012, 77, 275–287.
  • Brumm MW and Grabke HJ: ‘The oxidation behavior of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys’, Corros. Sci., 1992, 33, (11), 1677–1690.
  • Tomaszewicz P and Wallwork GR: ‘The oxidation of high-purity iron-chromium-aluminum alloys at 800°C’, Oxid. Met., 1983, 20, (3/4), 75–109.
  • Zhang ZG, Gesmundo F, Hou PY and Niu Y: ‘Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys’, Corros. Sci., 2006, 48, 741–765.
  • Li N, Sakidja R and Ching W.-Y: ‘Oxidation of Cr2AlC (0001): Insights from ab Initio calculations’, JOM, 2013, 65, 1487–1491.
  • Crowell JE, Chen JG and Yates JT: ‘Surface sensitive spectroscopic study of the interaction of oxygen with Al(111) – low temperature chemisorbtion and oxidation’, Surf. Sci., 1986, 165, 37–64.
  • Khanna AS: ‘Introduction to high temperature oxidation and corrosion’, ASM International 71–86, 2002, Materials Park, Ohio.
  • Birks N, Meier GH and Pettit FS: ‘Introduction to the high-temperature of metals’, 2nd edn, 62–105; 2006, Cambridge, Cambridge University Press.
  • Lee DB and Nguyenn TD: ‘Cyclic oxidation of Cr2AlC between 1000 and 1300°C in air’, J. Alloys Compd, 2008, 464, 434–439.
  • Lin ZJ, Li MS, Wang JY and Zhou YC: ‘High-temperature oxidation and corrosion of Cr2AlC’, Acta Mater., 2007, 55, 6182–6191.
  • Lee D, Nguyen T, Han J and Park S: ‘Oxidation of Cr2AlC at 1300°C in air’, Corros. Sci., 2007, 49, 3926–3934.
  • Li S, Chen X, Zhou Y and Song G: ‘Influence of grain size on high temperature oxidation bahavior of Cr2AlC’, Ceram. Int., 2013, 39, 2715–2721.
  • Li C, Wang Z and Wang C: ‘Phase stability, mechanical properties and electronic structure of hexagonal and trigonal Ti5Al2C3: An ab initio study’, Intermetallics, 2013, 33, 105–112.
  • Frodelius J, Lu J, Jensen J, Paul D, Hultman L and Eklund P: ‘Phase stability and initial low-temperature oxidation mechanism of Ti2AlC thin films’, J. Eur. Ceram. Soc., 2013, 33, 375–382.
  • Dahlqvist M, Alling B, Abrikosov IA and Rose’n J: ‘Phase stability of Ti2AlC upon oxygen incorporation: a first-principles investigation’, Phys. Rev. B, 2010, 81B, 024111-1–024111-8.
  • Wang J, Zhou Y, Liao T, Zhang J and Lin Z: ‘ A first principles investigation of the phase stability of Ti2AlC with Al vacancies’, Scr. Mater., 2008, 58, 227–230.
  • Wang J, Wang J, Zhou Y and Hu C: ‘Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study’, Acta Mater., 2008, 56, 1511–1518.
  • Mo Y, Rulis P and Ching WY: ‘Electronic structure and optical conductivities of 20 MAX-phase compounds’, Phys. Rev. B, 2012, 86B, 165122-1–165122-10.
  • Cui S, Wei D, Hu H, Feng W and Gong Z: ‘First-principles study of the structural and elastic properties of Cr2AlX(X = N, C) compounds’, J. Solid State Chem., 2012, 191,147–152.
  • Brik MG, Avram NM and Avram CN: ‘Ab initio calculations of the electronic, structural and elastic properties of Nb2InC’, Comp. Mater. Sci., 2012, 63, 227–231.
  • Ghebouli MA, Ghebouli B, Fatmi M and Bouhemadou A: ‘Theoretical prediction of the structural, elastic, electronic and thermal properties of the MAX phases X2SiC (X =  Ti and Cr)’, Intermetallics, 2011, 19, 1936–1942.
  • Cui S, Feng W, Hu H, Lv Z, Zhang G and Gong Z: ‘First-principle studies of the electronic and elastic properties of Ti2GeC’, Solid State Commun., 2011, 151, 491–494.
  • Bai Y, He X, Li M, Sun Y, Zhu C and Li Y: ‘Ab initio study of the bonding and elastic properties of Ti2CdC’, Solid State Sci., 2010, 12,144–147.
  • Kanoun MB, Goumri-Said S and Reshak AH: ‘Theoretical study of mechanical, electronical, chemical bonding and optical properties of Ti2SnC, Zr2SnC, Hf2SnC and Nb2SnC’, Comput. Mater. Sci., 2009, 47, 491–600.
  • Bouhemadou A: ‘Structural, electronic and elastic properties of MAX phases’, Solid State Sci., 2009, 11, 1875–1881.
  • Sun Z, Li S, Ahuja R and Schneider JM: ‘Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb and Ta)’, Solid State Commun., 2004, 129, 589–592.
  • Ching W.-Y, Mo Y, Aryal S and Rulis P: ‘Intrinsic mechanical properties of 20 MAX-phase compounds’, J. Am. Ceram. Soc., 2013, 96, 2292–2297.
  • Barsoum MW: ‘The MN+1AXN phases: a new class of solids’, Prog. Solid State Chem., 2000, 28, 201–281.
  • Palmquist JP, Li S, Persson POA, Emmerlich J, et al.: ‘Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations’, Phys. Rev. B, 2004, 70B, 165401-1–165401-13.
  • Emmerlich J, Högberg H, Sasvari S, Persson POÅ, et al.: ‘Growth of Ti3SiC2 thin films by elemental target magnetron sputtering’, J. Appl. Phys., 2004, 96, 4817–4826.
  • Gulbinski W, Gilewicz A, Suszko T, Warcholinski B and Kuklinski Z: ‘Ti-Si-C sputter deposited thin film coatings’, Surf. Coat. Technol., 2004, 180/181, 341–346.
  • Palmquist J.-P, Jansson U, Seppänen T, Persson POÅ, Birch J, Hultman L and Isberg P: ‘Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films’, Appl. Phys. Lett., 2002, 81, 835–837.
  • Högberg H, Hultman L, Emmerlich J, Joelsson T, Eklund P, et al.: ‘Growth and characterization of MAX-phase thin films’, Surf. Coat. Technol., 2005, 193, 6–10.
  • Wilhelmsson O, Palmquist J.-P, Nyberg T and Jansson U: ‘Deposition of Ti2AlC and Ti3AlC2 epitaxial films by magnetron sputtering’, Appl. Phys. Lett., 2004, 85, 1066–1068.
  • Wilhelmsson O, Palmquist J.-P, Lewin E, Emmerlich J, Eklund P, et al.: ‘Deposition and characterization of ternary thin films within the Ti-Al-C system by DC magnetron sputtering’, J. Cryst. Growth, 2006, 291, 290–300.
  • Schneider JM, Sun ZM, Mertens R, Uestel F and Ahuja R: ‘Ab initio calculations and experimental determination of the structure of Cr2AlC’, Solid State Commun., 2004, 130, 445–449.
  • Mertens R., Sun Z.M., Music D. and Schneider J.M.: ‘Effect of the composition on the structure of Cr-Al-C Investigated by combinatorial thin film synthesis and ab Initio calculations’, Adv. Eng. Mater., 2004, 6, 903–907.
  • Walter C, Sigumonrong DP, EI-Raghy T and Schneider JM: ‘Towards large area deposition of Cr2AlC on steel’, Thin Solid Films, 2006, 515, 389–393.
  • Sun Z and Ahuja R: ‘Ab initio study of the Cr2AlC(0001) surface’, Appl. Phys. Lett., 2006, 88, 161913-1–161913-3.
  • Music D., Sun Z., Ahuja R. and Schneider J.M.: ‘Electronic structure of M2AlC (0001) surfaces (M = Ti, V, Cr)’, J. Phys. Condens. Matter, 2006, 18, 8877–8881.
  • Music D., Sun Z., Ahuja R. and Schneider J.M.: ‘Surface energy of M2AC(0001) determined by density functional theory (M = Ti, V, Cr; A = Al, Ga, Ge)’, Surf. Sci., 2007, 601, 896–899.
  • Wang J and Zhou Y: ‘Stable M2AlC(0001) surfaces (M = Ti, V and Cr) by first-principle investigation’, J. Phys. Condens. Matter, 2008, 20, 225006-1–225006-11.
  • Batra IP and Kleinman L: ‘Chemisorption of oxygen on aluminium’, J. Electron. Spectrosc. Relat. Phenom., 1984, 33, 175–241.
  • Zhukov V, Popova I and Yates JT: ‘Initial stages of Al(111) oxidation with oxygen-temperature dependence of the integral reactive sticking coefficient’, Surf. Sci., 1999, 441, 251–264.
  • O’Connor DJ, Wouters ER, et al.: ‘Oxidation of Al(111)’, Surf. Sci., 1993, 287/288, 438–442.
  • Brune H, Wintterlin J, Trost J, Ertl G, Wiechers J and Behm RJ: ‘Interaction of oxygen with Al(111) studied by scanning tunneling microscopy’, J. Chem. Phys., 1993, 99, 2128–2148.
  • Gartland PO: ‘Adsorption of oxygen on clean single crystal faces of aluminium’, Surf. Sci., 1977, 62,183–196.
  • McConville CF, Seymour DL, Woodruff DP and Bao S: ‘Synchrotron radiation core level photoemission investigation of the initial stages of oxidation of Al(111)’, Surf. Sci. 1987, 188, 1–14.
  • Trost J, Brune H, Wintterlin J, Behm RJ and Ertl G: ‘Interaction of oxygen with Al(111) at elevated temperatures’, J. Chem. Phys., 1998, 108, 1740–1747.
  • Sigumonrong D.P., Zhang J., Zhou Y., Music D. and Schneider J.M.: ‘Synthesis and elastic properties of V2AlC thin films by magnetron sputtering from elemental targets’, J. Phys. D, 2009, 42D, 185408-1–185408-8.
  • Wilhelmsson O, Eklund P, Högberg H, Hultman L and Jansson U: ‘Structural, electrical and mechanical characterization of magnetron-sputtered V-Ge-C thin films’, Acta Mater., 2008, 56, 2563–2569.
  • Schneider J.M., Sigumonrong D.P., Music D., Walter C., Emmerlich J., Iskandar R. and Mayer J.: ‘Elastic properties of Cr2AlC thin films probed by nanoindentation and ab initio molecular dynamics’, Scr. Mater., 2007, 57, 1137–1140.
  • Baben M, Shang L, Emmerlich J and Schneider JM: ‘Oxygen incorporation in M2AlC (M = Ti, V, Cr)’, Acta Mater., 2012, 60, 4810–4818.
  • Boucher R, Berger O and Leyens C: ‘Magnetic properties of bulk and thin film Cr-Al-C’, J. Appl. Phys., submitted.
  • Boucher R and Berger O: ‘Magnetic model for the oxidation process of Y-containing Cr-Al-C’, Surf. Eng., to be published.
  • Berger O, Leyens C, Heinze S, Boucher R and Ruhnow M: ‘Characterization of Cr-Al-C and Cr-Al-C-Y films synthesized by HIPIMS at a low deposition temperature’, Thin Solid Films, to be published.
  • Avdulkadhim A, Baben M, et al.: ‘Crystallization kinetics of amorphous Cr2AlC thin films’, Surf. Coat. Technol., 2011, 206, 599–603.
  • ‘The interactive Ellingham diagram’, University of Cambridge, Cambridge, UK. Available from http.//www.doitpoms.ac.uk/tlplib/Ellingham_diagrams/interactive.php
  • Tian WB, Wang PL, Kan YM and Zhang GJ: ‘Oxidation behavior of Cr2AlC ceramics at 1100 and 1250°C’, J. Mater. Sci., 2008, 43, 2785–2791.
  • Berger O, Boucher R and Ruhnow M: ‘Part II. Oxidation of Yttrium-doped Cr2AlC films in the temperature range between 700–1200°C’, Surf. Eng., accepted.
  • Bobzin K: ‘Oberflächentechnik für den Maschinenbau’, 129–135; 2013, Weinheim, Wiley–CH Verlag GmbH&Co.KGaA.
  • Lee D and Park S: ‘Oxidation of Cr2AlC between 900 and 1200°C in air’, Oxid. Met., 2007, 68, (5–6), 211–222.
  • Bürgel R, Maier HJ and Niendorf T: ‘Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und –beschichtungen’, Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH 2011 Vol. 4, 168–172; 2001, Wiesbaden.
  • Tallman DJ, Anasori B and Barsoum W: ‘A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air’, Mater. Res. Lett., 2013, 1, (3), 115–125.
  • Golightly FA, Stott FH and Wood GC: ‘The relationship between oxide grain morphology and growth mechnisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys’, J. Electrochem. Soc., 1979, 126, (6),1035–1042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.