392
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Application of RF discharge in oxygen to create highly oxidized metal layers

, , , &
Pages 1-5 | Received 13 Aug 2014, Accepted 09 Jan 2015, Published online: 23 Feb 2016

References

  • Kawazoe H, Yasukawa M, Hyodo H, et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389:939–942. doi: 10.1038/40087
  • Granqvist CG. Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells. 2007;91:1529–1598. doi: 10.1016/j.solmat.2007.04.031
  • Nilius N. Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf Sci Rep. 2009;64:595–659. doi: 10.1016/j.surfrep.2009.07.004
  • Lambert RM, Williams FJ, Cropley RL, et al. Heterogeneous alkene epoxidation: past, present and future. J Molec Catal A. 2005;228A:27–33. doi: 10.1016/j.molcata.2004.09.077
  • Hashmi ASK, Hutchings GJ. Gold catalysis. Angew Chem Int Ed Engl. 2006;45:7896–7936. doi: 10.1002/anie.200602454
  • Liu X, Madix RJ, Friend CM. Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. Chem Soc Rev. 2008;37:2243–2261. doi: 10.1039/b800309m
  • Roy K, Vinod CP, Gopinath CS. Design and performance aspects of a custom-built ambient pressure photoelectron spectrometer toward bridging the pressure gap: oxidation of Cu, Ag, and Au surfaces at 1 Mbar O2 pressure. J Phys Chem C. 2013;117C:4717–4726. doi: 10.1021/jp312706s
  • Gottfried JM, Schmidt KJ, Schroeder SLM, et al. Spontaneous and electron-induced adsorption of oxygen on Au (110)-(1×2). Surf Sci. 2002;511:65–82. doi: 10.1016/S0039-6028(02)01555-8
  • Canning NDS, Outka D, Madix RJ. The adsorption of oxygen on gold. Surf Sci. 1984;141:240–254. doi: 10.1016/0039-6028(84)90209-7
  • Gao D, Zhang Y, Xu C, et al. Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2–ZrC–SiC in air. Mater Chem Phys. 2011;126:156–161. doi: 10.1016/j.matchemphys.2010.11.046
  • Herd B, Over H. Atomic scale insights into the initial oxidation of Ru(0001) using atomic oxygen. Surf Sci. 2014;622:24–34. doi: 10.1016/j.susc.2013.11.017
  • Klyushin AY, Rocha TCR, Hävecker M, et al. A near ambient pressure XPS study of Au oxidation. Phys Chem Chem Phys. 2014;16:7881–7886. doi: 10.1039/c4cp00308j
  • Kim J, Samano E, Koel BE. Oxygen adsorption and oxidation reactions on Au(211) surfaces: exposures using O2 at high pressures and ozone (O3) in UHV. Surf Sci. 2006;600:4622–4632. doi: 10.1016/j.susc.2006.07.057
  • Park HW, Bang JH, Hui KN, et al. Characteristics of NiO–AZO thin films deposited by magnetron co-sputtering in an O2 atmosphere. Mater Lett. 2012;74:30–32. doi: 10.1016/j.matlet.2012.01.021
  • Dolique V, Thomann A-L, Millon E, et al. About the key factors driving the resistivity of AuOx thin films grown by reactive magnetron sputtering. Appl Surf Sci. 2014;295:194–197. doi: 10.1016/j.apsusc.2014.01.026
  • Irissou E, Denis M, Chaker M, et al. Gold oxide thin film grown by pulsed laser deposition in an O2 atmosphere. Thin Solid Films. 2005;472:49–57. doi: 10.1016/j.tsf.2004.06.092
  • Gong Y, Wang C, Shen Q, et al. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere. Appl Surf Sci. 2013;285:324–330. doi: 10.1016/j.apsusc.2013.07.168
  • Juodkazias K, Juodkazyte J, Jasulaitiene V, et al. XPS studies on the gold oxide surface layer formation. Electrochem Commun. 2000;2:503–507. doi: 10.1016/S1388-2481(00)00069-2
  • Dang BHQ, Rahman M, MacElroy D, et al. Evaluation of microwave plasma oxidation treatments for the fabrication of photoactive un-doped and carbon-doped TiO2 coatings. Surf Coat Technol. 2012;206:4113–4118. doi: 10.1016/j.surfcoat.2012.04.003
  • Rajani KV, Daniels S, McGlynn E, et al. Low temperature growth technique for nanocrystalline cuprous oxide thin films using microwave plasma oxidation of copper. Mater Lett. 2012;71:160–163. doi: 10.1016/j.matlet.2011.12.044
  • Fuchs P. Low-pressure plasma cleaning of au and ptir noble metal surfaces. Appl. Surf Sci. 2009;256:1382–1390. doi: 10.1016/j.apsusc.2009.08.093
  • Stadnichenko AI, Koshcheev SV, Boronin AI. Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Moscow Univ Chem Bull. 2007;62:343–349. doi: 10.3103/S0027131407060090
  • Kibis LS, Titkov AI, Stadnichenko AI, et al. X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl Surf Sci. 2009;255:9248–9254. doi: 10.1016/j.apsusc.2009.07.011
  • Kibis LS, Stadnichenko AI, Pajetnov EM, et al. The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl Surf Sci. 2010;257:404–413. doi: 10.1016/j.apsusc.2010.07.002
  • Briggs D, Seah MP (eds.). Practical surface analysis by Auger and X-ray photoelectron spectroscopy. New York: Wiley&Sons Ltd; 1983.
  • Kibis LS, Stadnichenko AI, Koscheev SV, et al. Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity. J Phys Chem C. 2012;116C:19342–19348. doi: 10.1021/jp305166k
  • Gulyaev RV, Stadnichenko AI, Slavinskaya EM, et al. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl Catal A. 2012;439A–440A:41–50. doi: 10.1016/j.apcata.2012.06.045
  • Svintsitskiy DA, Stadnichenko AI, Demidov DV, et al. Investigation of oxygen states and reactivities on a nanostructured cupric oxide surface. Appl Surf Sci. 2011;257:8542–8549. doi: 10.1016/j.apsusc.2011.05.012
  • Robert T, Bartel M, Offergeld G. Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy. Surf Sci. 1972;33:123–130. doi: 10.1016/0039-6028(72)90103-3
  • Wagner CD, Zatko DA, Raymond RH. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal Chem. 1980;52:1445–1451. doi: 10.1021/ac50059a017
  • Schön G. ESCA studies of Ag, Ag2O and AgO. Acta Chem Scand. 1973;27:2623–2633. doi: 10.3891/acta.chem.scand.27-2623
  • Waterhouse GIN, Bowmaker GA, Metson JB. Oxidation of a polycrystalline silver foil by reaction with ozone. Appl Surf Sci. 2001;183:191–204. doi: 10.1016/S0169-4332(01)00561-X
  • Tjeng LH, Meinders MBJ, van Elp J, et al. Electronic structure of Ag2O. Phys Rev B. 1990;41A:3190–3199. doi: 10.1103/PhysRevB.41.3190
  • Hoflund GB, Hazos ZF, Salaita GN. Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B. 2000;62B:11126–11133. doi: 10.1103/PhysRevB.62.11126
  • Bukhtiyarov VI, Kondratenko VA, Boronin AI. Features of the interaction of a CO + O2 mixture with silver under high pressure. Surf Sci Lett. 1993;293:L826–L829.
  • Zemlyanov DY, Savinova E, Scheybal A, et al. XPS observation of OH groups incorporated in an Ag(111) electrode. Surf Sci. 1998;418:441–456. doi: 10.1016/S0039-6028(98)00728-6
  • Kibis LS, Avdeev VI, Koscheev SV, et al. Oxygen species on the silver surface oxidized by MW-discharge. study by photoelectron spectroscopy and DFT model calculations. Surf Sci. 2010;604:1185–1192. doi: 10.1016/j.susc.2010.03.035
  • Shi H, Asahi R, Stampfl C. Properties of the gold oxides Au2O3 and Au2O: first-principles investigation. Phys Rev B. 2007;75B:205125–205132. doi: 10.1103/PhysRevB.75.205125
  • Carley AF, Davies PR. Oxygen states in oxide layers. Interfacial science (chemistry for the 21st century monograph), Roberts MW, ed. Oxford, Blackwell; 1997. pp. 77–107.
  • Svintsitskiy DA, Kardash TY, Stonkus OA, et al. In situ XRD, XPS, TEM, and TPR study of highly active in Co oxidation CuO nanopowders. J Phys Chem C. 2013;117C:14588–14599. doi: 10.1021/jp403339r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.