222
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic water disinfection on oxide semiconductors: Part 2 – structure, functional properties and reactivity of microbial agents

, , &
Pages 16-33 | Received 11 Apr 2011, Accepted 08 Aug 2011, Published online: 22 Nov 2013

References

  • ‘The world health report 2005 – make every mother and child count’ 2005, Geneva, World Health Organization.
  • Fenwick A.: ‘Waterborne infectious diseases – could they be consigned to history?’, Science, 2006, 313, 1077–1081.
  • ‘1st UN world water development report: water for people, water for life’; 2003, Paris, New York, Oxford, UNESCO.
  • Leclerc H., Schwartzbrod L. and Dei-Cas E.: ‘Microbial agents associated with waterborne diseases’, Crit. Rev. Microbiol., 2002, 28, 371–409.
  • Li Q., Mahendra S., Lyon D. Y., Brunet L., Liga M. V., Li D. and Alvarez P. J.: ‘Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications’, Water Res., 2008, 42, 4591–4602.
  • Martinez-Huitle C. A. and Brillas E.: ‘Electrochemical alternatives for drinking water disinfection’, Angew. Chem. Int. Edn, 2008, 47, 1998–2005.
  • Chang S. L.: ‘The safety of water disinfection’, Annu. Rev. Public Health, 1982, 3, 393–418.
  • Boorman G. A.: ‘Drinking water disinfection byproducts: review and approach to toxicity evaluation’, Environ. Health Perspect., 1999, 107, (Suppl. 1), 207–217.
  • Nieuwenhuijsen M. J., Smith R., Golfinopoulos S., Best N., Bennett J., Aggazzotti G., Righi E., Fantuzzi G., Bucchini L., Cordier S., Villanueva C. M., Moreno V., La Vecchia C., Bosetti C., Vartiainen T., Rautiu R., Toledano M., Iszatt N., Grazuleviciene R. and Kogevinas M.: ‘Health impacts of long-term exposure to disinfection by-products in drinking water in Europe: HIWATE’, J. Water Health, 2009, 7, 185–207.
  • Meinhardt P. L.: ‘Water and bioterrorism: preparing for the potential threat to U.S. water supplies and public health’, Annu.Rev. Public Health, 2005, 26, 213–237.
  • Lin Y.: ‘Study on environmental health strategy after earthquake’, Biomed. Environ. Sci., 1989, 2, 331–334.
  • Reynolds K. A., Mena K. D. and Gerba C. P.: ‘Risk of waterborne illness via drinking water in the United States’, Rev. Environ. Contam. Toxicol., 2008, 192, 117–158.
  • Bak T., Nowotny J., Sucher N. J. and Wachsman E. D.: ‘Photocatalytic water disinfection on oxide semiconductors I. Basic concepts of TiO2 photocatalysis’,. Energy Environ. Sci., to be published.
  • Wei C., Lin W. Y., Zainal Z., Williams N. E., Zhu K., Kruzic A. P., Smith R. L. and Rajeshwar K.: ‘Bactericidal activity of TiO2 photocatalyst in aqueous-media – toward a solar-assisted water disinfection system’, Environ. Sci. Technol., 1994, 28, 934–938.
  • Bosshard F., Berney M., Scheifele M., Weilenmann H. U. and Egli T.: ‘Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry’, Microbiology, 2009, 155, (Pt 4), 1310–1317.
  • Rincón A. G. and Pulgarin C.: ‘Field solar inactivation in the absence and presence of TiO: is UV solar dose an appropriate parameter for standardization of water solar disinfection?’ Solar Energy, 2004, 77, 635–648.
  • Rincón A. G. and Pulgarin C.: ‘Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scaleImplications in solar disinfection at low temperature of large quantities of water’, Catal. Today, 2007, 122, 128–136.
  • Rincón A. G., Pulgarin C., Adler N. and Peringer P.: ‘Interaction between E. coli inactivation and DBP-precursors – dihydroxybenzene isomers – in the photocatalytic process of drinking-water disinfection with TiO2’ J. Photochem. Photobiol., 2001, 139, 233–241.
  • Daly M. J.: ‘A new perspective on radiation resistance based on Deinococcus radiodurans’, Nat. Rev. Microbiol., 2009, 7, 237–245.
  • Denyer S. P. and Stewart G. S. A. B.: ‘Mechanisms of action of disinfectants’, Int. Biodeterior. Biodegrad., 1998, 41, 261–268.
  • Kohanski M. A., Dwyer D. J., Hayete B., Lawrence C. A. and Collins J. J.: ‘A common mechanism of cellular death induced by bactericidal antibiotics’, Cell, 2007, 130, 797–810.
  • Woese C. R., Kandler O. and Wheelis M. L.: ‘Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya’, Proc. Natl Acad. Sci. USA, 1990, 87, 4576–4579.
  • Gram H.: ‘Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten.’, Fortschritte der Medizin, 1884, 2, 185–189.
  • Dittrich M. and Sibler S.: ‘Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy’, J. Colloid Interf. Sci., 2005, 286, 487–495.
  • Robertson B. R., Button D. K. and Koch A. L.: ‘Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry’, Appl. Environ. Microbiol., 1998, 64, 3900–3909.
  • Shahab N., Flett F., Oliver S. G. and Butler P. R.: ‘Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r’, Microbiology, 1996, 142, 1927–1935.
  • Steen H. B. and Boye E.: ‘Escherichia coli growth studied by dual-parameter flow cytophotometry’, J. Bacteriol., 1981, 145, 1091–1094.
  • Damoglou A. P. and Dawes E. A.: ‘Studies on the lipid content and phosphate requirement of glucose- and acetate-grown Escherichia coli’, Biochem. J., 1968, 110, 775–781.
  • Demain A. L. and Solomon N. A.: ‘Industrial microbiology’, Sci. Am., 1981, 245, 67–75.
  • Imlay J. A.: ‘Pathways of oxidative damage’, Annu. Rev. Microbiol., 2003, 57, 395–418.
  • Touati D.: ‘Iron and oxidative stress in bacteria’, Arch. Biochem. Biophys., 2000, 373, 1–6.
  • Matsunaga T., Tomoda R., Nakajima T. and Wake H.: ‘Photoelectrochemical sterilization of microbial cells by semiconductor powders’, FEMS Microbiol. Lett., 1985, 29, 211–214.
  • Ojeda J. J., Romero-Gonzalez M. E., Bachmann R. T., Edyvean R. G. J. and Banwart S. A.: ‘Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations’, Langmuir, 2008, 24, 4032–4040.
  • Huang D. B. and White A. C.: ‘An updated review on Cryptosporidium and Giardia’, Gastroenterol. Clin. North Am., 2006, 35, 291–314.
  • Jenkins M. B., Eaglesham B. S., Anthony L. C., Kachlany S. C., Bowman D. D. and Ghiorse W. C.: ‘Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts’, Appl. Environ. Microbiol., 2010, 76, 1926–1934.
  • Costerton J. W., Ingram J. M. and Cheng K.-J: ‘Structure and function of the cell envelope of Gram-negative bacteria’, Bacteriol. Rev., 1974, 38, 87–110.
  • Glauert A. M. and Thornley M. J.: ‘The topography of the bacterial cell wall’, Annu. Rev. Microbiol., 1969, 23, 159–198.
  • Jarosławski S., Duquesne K., Sturgis J. and Scheuring S.: ‘High-resolution architecture of the outer membrane of the Gram-negative bacteria Roseobacter denitrificans’, Mol. Microbiol., 2009, 74, 1211–1222.
  • Li Z. and Jensen G. J.: ‘Electron cryotomography: a new view into microbial ultrastructure’, Curr. Opin. Microbiol., 2009, 12, 333–340.
  • Gan L., Chen S. and Jensen G. J.: ‘Molecular organization of Gram-negative peptidoglycan’, Proc. Natl Acad. Sci. USA, 2008, 105, 18953–18957.
  • Meroueh S. O., Bencze K. Z., Hesek D., Lee M., Fisher J. F., Stemmler T. L. and Mobashery S.: ‘Three-dimensional structure of the bacterial cell wall peptidoglycan’, Proc. Natl Acad. Sci. USA, 2006, 103, 4404–4409.
  • van der Mei H. C., de Vries J. and Busscher H. J.: ‘X-ray photoelectron spectroscopy for the study of microbial cell surfaces’, Surf. Sci. Rep., 2000, 39, 1–24.
  • Dufrêne Y. F., Wal Avan der, Norde W. and Rouxhet P. G.: ‘X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of Gram-positive bacteria: comparison with biochemical analysis’, J. Bacteriol., 1997, 179, 1023–1028.
  • Jiang W., Saxena A., Song B., Ward B. B., Beveridge T. J. and Myneni S. C. B.: ‘Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy’, Langmuir, 2004, 20, 11433–11442.
  • Cronan J. E.: ‘Bacterial membrane lipids: where do we stand?’, Annu. Rev. Microbiol., 2003, 57, 203–224.
  • Cho K. Y. and Salton M. R.: ‘Fatty acid composition of bacterial membrane and wall lipids’, Biochim. Biophys. Acta, 1966, 116, 73–79.
  • Scheffers D. J. and Pinho M. G.: ‘Bacterial cell wall synthesis: new insights from localization studies’, Microbiol. Mol. Biol. Rev., 2005, 69, 585–607.
  • Osborn M. J.: ‘Structure and biosynthesis of the bacterial cell wall’, Annu. Rev. Biochem., 1969, 38, 501–538.
  • Vollmer W. and Bertsche U.: ‘Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli’, Biochim. Biophys. Acta, 2008, 1778, 1714–1734.
  • Sanderson A. R., Strominger J. L. and Nathenson S. G.: ‘Chemical structure of teichoic acid from Staphylococcus aureus, strain Copenhagen’, J. Biol. Chem., 1962, 237, 3603–3613.
  • Neuhaus F. C. and Baddiley J.: ‘A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria’, Microbiol. Mol. Biol. Rev., 2003, 67, 686–723.
  • Raetz C. R. H., Reynolds C. M., Trent M. S. and Bishop R. E.: ‘Lipid A modification systems in Gram-negative bacteria’, Annu. Rev. Biochem., 2007, 76, 295–329.
  • Raetz C. R. H. and Whitfield C.: ‘Lipopolysaccharide endotoxins’, Annu. Rev. Biochem., 2002, 71, 635–700.
  • Rosenbusch J. P.: ‘Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding’, J. Biol. Chem., 1974, 249, 8019–8029.
  • Salton M. R. and Owen P.: ‘Bacterial membrane structure’, Annu. Rev. Microbiol., 1976, 30, 451–482.
  • Sutherland I. W.: ‘The biofilm matrix – an immobilized but dynamic microbial environment’, Trends Microbiol., 2001, 9, 222–227.
  • Engelhardt H. and Peters J.: ‘Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer-cell wall interactions’, J. Struct. Biol., 1998, 124, 276–302.
  • Lauwaet T., Davids B. J., Reiner D. S., and Gillin F. D.: ‘Encystation of Giardia lamblia: a model for other parasites’, Curr. Opin. Microbiol., 2007, 10, 554–559.
  • Gerwig G. J., van Kuik J. A., Leeflang B. R., Kamerling J. P., Vliegenthart J. F., Karr C. D., and Jarroll E. L.: ‘The Giardia intestinalis filamentous cyst wall contains a novel beta(1–3)-N-acetyl-D-galactosamine polymer: a structural and conformational study’, Glycobiology, 2002, 12, 499–505.
  • Lesage G. and Bussey H.: ‘Cell wall assembly in Saccharomyces cerevisiae’, Microbiol. Mol. Biol. Rev., 2006, 70, 317–343.
  • Arroyo J., Bermejo C., García R., and Rodríguez-Peña J. M.: ‘Genomics in the detection of damage in microbial systems: cell wall stress in yeast’,Clin. Microbiol. Infect., 2009, 15, (Suppl. 1), 44–46.
  • Osumi M.: ‘The ultrastructure of yeast: cell wall structure and formation’, Micron, 1998, 29, 207–233.
  • Bhattacharya D. and Medlin L.: ‘Algal phylogeny and the origin of land plants’, Plant Physiol., 1998, 116, 9–15.
  • von Gunten U.: ‘Ozonation of drinking water: part I. Oxidation kinetics and product formation’, Water Res., 2003, 37, 1443–1467.
  • Venkatadri R. and Peters R.: ‘Chemical oxidation technologies: ultraviolet light/hydrogen peroxide, Fenton’s reagent, and titanium dioxide-assisted photocatalysis’, Hazard. Waste Hazard. Mater., 1993, 10, 107–149.
  • Jaeger C. D. and Bard A. J.: ‘Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems’, J. Phys. Chem., 1979, 83, 3146–3152.
  • Ireland J. and Valinieks J.: ‘Rapid measurement of aqueous hydroxyl radical concentrations in steady-state HO-flux systems.’, Chemosphere, 1992, 25, 383–396.
  • Skorb E. V., Antonouskaya L. I., Belyasova N. A., Shchukin D. G., Mohwald H. and Sviridov D. V.: ‘Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite’, Appl. Catal. B, 2008, 84B, 94–99.
  • Rao M. V., Rajeshwar K., Pal Verneker V. R. and DuBow J.: ‘Photosyntlhetic Production of H2 and H2O2 on semiconducting oxide grains in aqueous solutlons’, J. Phys. Chem., 1980, 84, 1987–1991.
  • Wrighton M. S., Ginley D. S., Wolczanski P. T., Ellis A. B., Morse D. L. and Linz A.: ‘Photoassisted electrolysis of water by irradiation of a titanium dioxide electrode’, Proc. Natl Acad. Sci. USA, 1975, 72, 1518–1522.
  • Hu C., Guo J., Qu J. and Hu X.: ‘Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation’, Langmuir, 2007, 23, 4982–4987.
  • Cho: ‘Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection’, Water Res, 2004, 38, 1069–1077.
  • Salih F. M.: ‘Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation’, J. Appl. Microbiol., 2002, 92, 920–926.
  • Cho M. and Yoon J.: ‘Measurement of OH radical CT for inactivating Cryptosporidium parvum using photo/ferrioxalate and photo/TiO2 systems’, J. Appl. Microbiol., 2008, 104, 759–766.
  • Egerton T. A., Kosa S. A. and Christensen P. A.: ‘Photoelectrocatalytic disinfection of E. coli suspensions by iron doped TiO2’ Phys. Chem. Chem. Phys, 2006, 8, 398–406.
  • Kubacka A., Ferrer M., Martinez-Arias A. and Fernandez-Farcia M.: ‘Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation’, Appl. Catal. B, 2008, 84B, 87–93.
  • Hu X., Hu C. and Qu J.: ‘Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation’, Appl. Catal. B, 2006, 69B, 17–23.
  • Guillard C., Bui T. H., Felix C., Moules V., Lina B. and Lejeune P.: ‘Microbiological disinfection of water and air by photocatalysis’, Comptes Rendus Chimie, 2008, 11, 107–113.
  • Ireland J., Klostermann P., Rice E. and Clark R.: ‘Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.’, Appl. Environ. Microbiol., 1993, 59, 1668–1670.
  • Kikuchi Y., Sunada K., Iyoda T., Hashimoto K. and Fujishima A.: ‘Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect’, 51–56; 1997, Lausanne, Elsevier Science.
  • Sunada K., Kikuchi Y., Hashimoto K. and Fujishima A.: ‘Bactericidal and detoxification effects of TiO2 thin film photocatalysts’, Environ. Sci. Technol., 1998, 32, 726–728.
  • Cho M., Chung H., Choi W. and Yoon J.: ‘Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection’, Appl. Environ. Microbiol., 2005, 71, 270–275.
  • Wolcott R. G., Franks B. S., Hannum D. M. and Hurst J. K.: ‘Bactericidal potency of hydroxyl radical in physiological environments’, J. Biol. Chem., 1994, 269, 9721–9728.
  • Gogniat G., Thyssen M., Denis M., Pulgarin C. and Dukan S.: ‘The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity’, FEMS Microbiol. Lett., 2006, 258, 18–24.
  • Nadtochenko V. A., Rincon A. G., Stanca S. E. and Kiwi J.: ‘Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy’ J. Photochem. Photobiol. A, 2005, 169A, 131–137.
  • Caballero L., Whitehead K. A., Allen N. S. and Verran J.: ‘Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light’, J. Photochem. Photobiol. A, 2009, 202A, 92–98.
  • Geoghegan M., Andrews J. S., Biggs C. A., Eboigbodin K. E., Elliott D. R., Rolfe S., Scholes J., Ojeda J. J., Romero-Gonzalez M. E., Edyvean R. G. J., Swanson L., Rutkaite R., Fernando R., Pen Y., Zhang Z. Y. and Banwart S. A.: ‘The polymer physics and chemistry of microbial cell attachment and adhesion’, Faraday Discuss., 2008, 139, 85–103.
  • Sroirayaa S., Triampob W., Moralesd N. and Triampoa D.: ‘Kinetics and mechanism of hydroxyl radical formation studied via electron spin resonance for photocatalytic nanocrystalline titania: effect of particle size distribution, concentration, and agglomeration’, J. Ceram. Process. Res., 2008, 9, 146–154.
  • Huang Z., Maness P., Blake D., Wolfrum E., Smolinski S. and Jacoby W.: ‘Bactericidal mode of titanium dioxide photocatalysis’, J. Photochem. Photobiol. A, 2000, 130A, 163–170.
  • Kim D. and Kwak S.: ‘Photocatalytic inactivation of E. coli with a mesoporous TiO2 coated film using the film adhesion method’ Environ. Sci. Technol., 2009, 43, 148–151.
  • Prasad G. K., Agarwal G. S., Singh B., Rai G. P. and Vijayaraghavan R.: ‘Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials’, J. Hazard. Mater., 2009, 165, 506–510.
  • Kurepa J., Paunesku T., Vogt S., Arora H., Rabatic B. M., Lu J., Wanzer M. B., Woloschak G. E. and Smalle J. A.: ‘Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana’, Nano Lett., 2010, 10, 2296–2302.
  • Schweikert C., Liszkay A. and Schopfer P.: ‘Scission of polysaccharides by peroxidase-generated hydroxyl radicals’, Phytochemistry, 2000, 53, 565–570.
  • Miller J. G. and Fry S. C.: ‘Characteristics of xyloglucan after attack by hydroxyl radicals’, Carbohydr. Res., 2001, 332, 389–403.
  • Hillaireau H. and Couvreur P.: ‘Nanocarriers’ entry into the cell: relevance to drug delivery’, Cell Mol. Life Sci., 2009, 66, 2873–2896.
  • Navarro E., Baun A., Behra R., Hartmann N. B., Filser J., Miao A. J., Quigg A., Santschi P. H. and Sigg L.: ‘Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi’, Ecotoxicology, 2008, 17, 372–386.
  • Stark G.: ‘Functional consequences of oxidative membrane damage’, J. Membr. Biol., 2005, 205, 1–16.
  • Leung, Chan, Hu, Yu and Wong: ‘Photocatalytic disinfection of marine bacteria using fluorescent light’, Water Res., 2008, 42, 4827–4837.
  • Saito T., Iwase T., Horie J. and Morioka T.: ‘Mode of photocatalytic bactericidal action of powdered semiconductor Ti02 on mutans streptococci’, J. Photochem. Photobiol. B, 1992, 14B, 369–379.
  • Maness P., Smolinski S., Blake D., Huang Z., Wolfrum E. and Jacoby W.: ‘Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism’, Appl. Environ. Microbiol., 1999, 65, 4094–4098.
  • Cheng Y. W., Chan R. C. Y. and Wong P. K.: ‘Disinfection of Legionella pneumophila by photocatalytic oxidation’, Water Res., 2007, 41, 842–852.
  • Sunada K., Watanabe T. and Hashimoto K.: ‘Studies on photokilling of bacteria on TiO2 thin film’, J. Photochem. Photobiol. A, 2003, 156A, 227–233.
  • Amezaga-Madrid P., Silveyra-Morales R., Cordoba-Fierro L., Nevarez-Moorillon G. V., Miki-Yoshida M., Orrantia-Borunda E. and Solis F. J.: ‘TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films’, J. Photochem. Photobiol. B, 2003, 70B, 45–50.
  • Erkan A., Bakir U. and Karakas G.: ‘Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films’, J. Photochem. Photobiol. A, 2006, 184A, 313–321.
  • Aikens J. and Dix T. A.: ‘Hydrodioxyl (perhydroxyl), peroxyl, and hydroxyl radical-initiated lipid peroxidation of large unilamellar vesicles (liposomes): comparative and mechanistic studies’, Arch. Biochem. Biophys., 1993, 305, 516–525.
  • Rincón A. G.: ‘Photocatalytical inactivation of E. coli effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration’ : Appl. Catal. B, 2003, 44B, 263–284.
  • Gerschman R., Gilbert D. L., Nye S. W., Dwyer P. and Fenn W. O.: ‘Oxygen poisoning and X-irradiation: a mechanism in common’, Science, 1954, 119, 623–626.
  • Farr S. B. and Kogoma T.: ‘Oxidative stress responses in Escherichia coli and Salmonella typhimurium’, Microbiol. Rev., 1991, 55, 561–585.
  • Hensley K. and Floyd R. A.: ‘Reactive oxygen species and protein oxidation in aging: a look back, a look ahead’, Arch. Biochem. Biophys., 2002, 397, 377–383.
  • Shacter E.: ‘Quantification and significance of protein oxidation in biological samples’, Drug Metab. Rev., 2000, 32, 307–326.
  • Halliwell B. and Whiteman M.: ‘Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?’, Br. J. Pharmacol., 2004, 142, 231–255.
  • Halliwell B. and Aruoma O. I.: ‘DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems’, FEBS Lett., 1991, 281, 9–19.
  • Flint D. H., Tuminello J. F. and Emptage M. H.: ‘The inactivation of Fe–S cluster containing hydro-lyases by superoxide’, J. Biol. Chem., 1993, 268, 22369–22376.
  • Keyer K. and Imlay J. A.: ‘Superoxide accelerates DNA damage by elevating free-iron levels’, Proc. Natl Acad. Sci. USA, 1996, 93, 13635–13640.
  • Kehrer J. P.: ‘The Haber–Weiss reaction and mechanisms of toxicity’, Toxicology, 2000, 149, 43–50.
  • Yamazaki I. and Piette L. H.: ‘EPR spin-trapping study on the oxidizing species formed in the reaction of the ferrous ion with hydrogen peroxide’, J. Am. Chem. Soc., 1991, 113, 7588–7593.
  • Fridovich I.: ‘Biological effects of the superoxide radical’, Arch. Biochem. Biophys., 1986, 247, 1–11.
  • Repine J. E., Fox R. B. and Berger E. M.: ‘Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical’, J. Biol. Chem., 1981, 256, 7094–7096.
  • Herrmann J.-M: ‘Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill).’, Top. Catal., 2005, 34, 49–65.
  • Diao H. F., Li X. Y., Gu J. D., Shi H. C. and Xie Z. M.: ‘Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction’, Process. Biochem., 2004, 39, 1421–1426.
  • Shiraishi Y. and Hirai T.: ‘Selective organic transformations on titanium oxide-based photocatalysts’, J. Photochem. Photobiol. C, 2008, 9C, 157–170.
  • Venkobachar C., Iyengar L. and Prabhakara Rao A. V. S.: ‘Mechanism of disinfection’, Water Res., 1975, 9, 119–124.
  • Winter J., Ilbert M., Graf P. C., Ozcelik D. and Jakob U.: ‘Bleach activates a redox-regulated chaperone by oxidative protein unfolding’, Cell, 2008, 135, 691–701.
  • Winterbourn C. C.: ‘Reconciling the chemistry and biology of reactive oxygen species’, Nat. Chem. Biol., 2008, 4, 278–286.
  • Davidson M.: ‘Molecular expressions: cell biology and microscopy – structure and function of cells and viruses: bacteria cell structure’, 2007, www.micro.magnet.fsu.edu/cells/bacteriacell.html
  • Hardin BertoniKleinsmith JJP.LJ: Becker's World of the Cell, 8th Edition. Pearson Education, Inc, Upper Saddle River, NJ.
  • Cowan M. K. and Talaro K. P.: ‘Microbiology: a systems approach’, 869; 2012, Boston, MA, McGraw-Hill.
  • Mader S. S.: ‘Biology’, 907, 991; 2010, New York, McGraw-Hill Higher Education.
  • Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N. and Rosenbusch J. P.: ‘Crystal structures explain functional properties of two E. coli porins’, Nature, 1992, 358, 727–733.
  • Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C. and Ferrin T. E.: ‘UCSF Chimera – a visualization system for exploratory research and analysis’, J. Comput. Chem., 2004, 25, 1605–1612.
  • Sanner M. F., Olson A. J. and Spehner J. C.: ‘Reduced surface: an efficient way to compute molecular surfaces’, Biopolymers, 1996, 38, 305–320.
  • Vey J. L., Yang J., Li M., Broderick W. E., Broderick J. B. and Drennan C. L.: ‘Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme’, Proc. Natl Acad. Sci. USA, 2008, 105, 16137–16141.
  • Bak T., Nowotny J., Sucher N. J. and Wachsman E.: ‘Effect of crystal imperfections on reactivity and photoreactivity of TiO2 (rutile) with oxygen, water, and bacteria’, J. Phys. Chem. C, 2011, 15C, 15711–15738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.