Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 114, 2015 - Issue 1
348
Views
29
CrossRef citations to date
0
Altmetric
Research Papers

Mechanical, tribological and thermal properties of hot pressed ZrB2–SiC composite with SiC of different morphology

, , , , &
Pages 45-54 | Received 02 May 2014, Accepted 29 Jun 2014, Published online: 11 Jul 2014

References

  • Zhu MA and Wang YG: ‘Pressureless sintering ZrB2–SiC ceramics at low temperatures’, Mater. Lett., 2009, 63, (23), 2035–2037.
  • Zhou XJ, Zhang GJ, Li YG, Kan YM and Wang PL: ‘Hot pressed ZrB2–SiC–C ultra high temperature ceramics with polycarbosilane as a precursor’, Mater. Lett., 2007, 61, (4–5), 960–963.
  • Zou J, Zhang GJ, Zhang H, Huang ZR, Vleugels J and Biest OV: ‘Improving high temperature properties of hot pressed ZrB2–20 vol% SiC ceramic using high purity powders’, Ceram. Int., 2013, 39, (1), 871–876.
  • Kim S, Chae J.-M, Lee S.-M, Oh Y.-S, Kim H.-T and Jang B.-K: ‘Change in microstructures and physical properties of ZrB2–SiC ceramics hot-pressed with a variety of SiC sources’, Ceram. Int., 2014, 40, 3477–3483.
  • Pizon D, Charpentier L, Lucas R, Foucaud S, Maître A and Pichelin MB: ‘Oxidation behavior of spark plasma sintered ZrC–SiC composites obtained from the polymer-derived ceramics route’, Ceram. Int., 2014, 40, 5025–5031.
  • Yang X, Su Z, Huang Q, Fang X and Chai L: ‘Microstructure and mechanical properties of C/C–ZrC–SiC composites fabricated by reactive melt infiltration with Zr, Si mixed powders’, J. Mater. Sci. Technol., 2013, 29, 702–710.
  • Monteverde F and Bellosi A: ‘The resistance to oxidation of an HfB2–SiC composite’, J. Eur. Ceram. Soc., 2005, 25, 1025–1031.
  • Monteverde F: ‘Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering’, J. Alloys Compd, 2007, 428,197–205.
  • Mallik M, Ray KK and Mitra R: ‘Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites’, J. Eur. Ceram. Soc., 2011, 31, 199–215.
  • Sonber JK and Suri AK: ‘Synthesis and consolidation of zirconium diboride: review: ‘, Adv. Appl. Ceram., 2011, 110, (6), 321–334.
  • Jayaseelan DD, Wang Y, Hilmas GE, Fahrenholtz W, Brown P and Lee WE: ‘TEM investigation of hot pressed–10 vol.% SiC–ZrB2 composite’, Adv. Appl. Ceram., 2011, 110, (1), 1–7.
  • Fahrenholtz WG, Hilmas GE, Zhang SC and Zhu S: ‘Pressureless sintering of zirconium diboride: particle size and additive effects’, J. Am. Ceram. Soc., 2008, 91, (5), 1398–1404.
  • Zou J, Zhang G.-J, Hu C.-F, Nishimura T, Sakka Y, Tanaka H, Vleugels J and Biest OVd: ‘High-temperature bending strength, internal friction and stiffness of ZrB2–20 vol% SiC ceramics’, J. Eur. Ceram. Soc., 2012, 32, (10), 2519–2527.
  • Zou J, Zhang G.-J, Vleugels J and Biest OVd: ‘High temperature strength of hot pressed ZrB2–20 vol% SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes’, J. Eur. Ceram. Soc., 2013, 33, (10), 1609–1614.
  • Zou J, Zhang G.-J, Hu C.-F, Nishimura T, Sakka Y, Vleugels J and d Biest OV: ‘Strong ZrB2–SiC–WC ceramics at 1600°C’, J. Am. Ceram. Soc., 2012, 95, (3), 874–878.
  • Zou J, Zhang G.-J and Kan Y.-M: ‘Formation of tough interlocking microstructure in UHTCs’, J. Mater. Res., 2009, 24, (7), 2428–34.
  • Zou J, Liu J, Zhang G.-J, Huang S, Vleugels J, Biest OVd and Shen JZ: ‘Hexagonal BN-encapsulated ZrB2 particle by nitride boronizing’, Acta Mater., 2014, 72, 167–177.
  • Chamberlain AL, Fahrenholtz WG, Hilmas GE and Ellerby DT: ‘High-strength zirconium diboride-based ceramics’, J. Am. Ceram. Soc., 2004, 87, (6), 1170–1172.
  • Levinea SR, Opilab EJ, Halbigc MC, Kisera JD, Singh M and Salema JA: ‘Evaluation of ultra-high temperature ceramics for aeropropulsion use’, J. Eur. Ceram. Soc., 2002, 22, 2757–2767.
  • Monteverde F: ‘Beneficial effects of an ultra-fine alpha-SiC incorporation on the sinterability and mechanical properties of ZrB2 ’, Appl. Phys. A Mater. Sci. Process., 2006, 82, (2), 329–337.
  • Rezaie A, Fahrenholtz WG and Hilmas GE: ‘Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC’, J. Mater. Sci., 2007, 42, (8), 2735–2744.
  • Zou J, Zhang GJ, Zhang H, Huang ZR, Vleugels J and Biest OV: ‘Improving high temperature properties of hot pressed ZrB2–20 vol% SiC ceramic using high purity powders’, Ceram. Int., 2013, 39, (1), 871–876.
  • Guo S.-Q, Kagawa Y, Nishimura T, Chung D and Yang J.-M: ‘Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites’, J. Eur. Ceram. Soc., 2008, 28, (6), 1279–1285.
  • Liu L, Li H, Shi X, Fu Q, Feng W, Yao X and Ni C: ‘Influence of SiC additive on the ablation behavior of C/C composites modified by ZrB2–ZrC particles under oxyacetylene torch’, Ceram. Int., 2014, 40, (1), 541–549.
  • Zhao L, Jia D, Duan X, Yang Z and Zhou Y: ‘Oxidation of ZrC–30 vol% SiC composite in air from low to ultrahigh temperature’, J. Eur. Ceram. Soc., 2012, 32, (4), 947–954.
  • Wang H, Lee S.-H and Feng L: ‘HfB2–SiC composite prepared by reactive spark plasma sintering’, Ceram. Int., 2014, in press.
  • Z.-Solvas E, Jayaseelan DD, Lin HT, Brown P and Lee WE: ‘Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering’, J. Eur. Ceram. Soc., 2013, 33, (7), 1373–1386.
  • Colombo P: ‘Synthesis of silicon carbide thin films with polycarbosilane (PCS) ’, J. Am. Ceram. Soc., 1997, 80, (9), 2333–2340.
  • Zhu SM, Fahrenholtz WG and Hilmas GE: ‘Enhanced densification and mechanical properties of ZrB2–SiC processed by a preceramic polymer coating route’, Scr. Mater., 2008, 59, (1), 123–126.
  • Sciti D, Pienti L, Fabbriche DD, Guicciardi S and Silvestroni L: ‘Combined effect of SiC chopped fibres and SiC whiskers on the toughening of ZrB2’, Ceram. Int., 2014, 40, (3), 4819–4826.
  • Musa C, Orrù R, Sciti D, Silvestroni L and Cao G: ‘Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics’, J. Eur. Ceram. Soc., 2013, 33, (3), 603–614.
  • Chen S, Zhang C, Zhang Y, Zhao D, Hu H and Xiong X: ‘Effects of polymer derived SiC interphase on the properties of C/ZrC composites’, Mater. Des., 2014, 58, 102–107.
  • Oh H.-C, Lee S.-H and Choi S.-C: ‘Two-step reduction process and spark plasma sintering for the synthesis of ultra fine SiC and ZrB2 powder mixtures’, Int. J. Refract. Met. Hard Mater., 2014, 42, 132–135.
  • Zhu T, Xu L, Zhang X, Han W, Hu P and Weng L: ‘Densification, microstructure and mechanical properties of ZrB2–SiCw ceramic composites’, J. Eur. Ceram. Soc., 2009, 29, (13), 2893–2901.
  • Zhou X.-J, Zhang G.-J, Li Y.-Gang, Kan Y.-M and Wang P.-L: ‘Hot pressed ZrB2–SiC–C ultra high temperature ceramics with polycarbosilane as a precursor’, Mater. Lett., 2007, 61, (4–5), 960–963.
  • Matthews S, Edirisinghe MJ and Folkes MJ: ‘Effect of pre-pyrolysis heat treatment on the preparation of silicon carbide from a polycarbosilane precursor’, Ceram. Int., 1999, 25, 49–60.
  • Anstis GR, Chantikul P, Lawn BR and Marshall DB: ‘A critical evaluation of indentation techniques for measuring fracture toughness. I. Direct crack measurement’, J. Am. Ceram. Soc., 1981, 64, 533–538.
  • Archard JF: ‘Contact and rubbing of flat surfaces’, J. Appl. Phys., 1953, 24, 981–988.
  • Zhu SM, Ding SQ, Xi HA and Wang RD: ‘Low-temperature fabrication of porous SiC ceramics by pre ceramic polymer reaction bonding’, Mater. Lett., 2005, 59, 595–597.
  • Chamberlain AL, Fahrenholtz WG and Hilmas GE: ‘Pressureless sintering of zirconium diboride’, J. Am. Ceram. Soc., 2006, 89, (2), 450–456.
  • Lawn BR, Evans AG and Marshall DB: ‘Elastic/plastic indentation damage in ceramics: the median/radial crack system’, J. Am. Ceram. Soc., 1980, 63, (9–10), 574–581.
  • Iost A and Bigot R: ‘Indentation size effect: reality or artefact?’, J. Mater. Sci., 1996, 31, 3573–3577.
  • Marshall DB, Lawn BR and Evans AG: ‘Elastic/plastic indentation damage in ceramics: the lateral crack system’, J. Am. Ceram. Soc., 1982, 65, (11), 561–566.
  • Lankford J, Predebon WW, Staehler JM, Subhash G and Pletka BJ and Anderson CE: ‘The role of plasticity as a limiting factor in the compressive failure of high strength ceramics’, Mech. Mater., 1998, 29, 205–218.
  • Somiya S: ‘Handbook of advanced ceramics: materials, applications, processing and properties’, 2nd edn; 2013, New York, Academic Press.
  • Ghosh D, Subhash G and Bourne GR: ‘Room-temperature dislocation activity during mechanical deformation of polycrystalline ultra-high-temperature ceramics’, Scr. Mater., 2009, 61, 1075–1078.
  • Jahanmir S: ‘Friction and wear of ceramics’; 1994, New York, Marcel Dekker.
  • Cook RF and Pharr GM: ‘Direct observation and analysis of indentation cracking in glasses and ceramics’, J. Am. Ceram. Soc., 1990, 73, 787–817.
  • Mukherjee J, Chakraborty S, Chakravarty S, Ranjan A and Das PK: ‘Mechanical and tribological properties of silicon carbide coating on Inconel alloy from liquid pre-ceramic precursor’, Ceram. Int., 2014, 40, 6639–6645.
  • Salem J, Hilmas G and Fahrenholtz W: ‘Mechanical properties and processing of ceramic binary, ternary and composite systems’, Ceram. Eng. Sci. Proc., 2008, 29, (2).
  • Litovsky E, Roisman TG, Shapiro M and Shavit A: ‘Effect of grain thermal expansion mismatch on thermal conductivity of porous ceramics’, J. Am. Ceram. Soc., 1999, 82, (4), 994–1000.
  • Siebeneck HJ, Hasselman DPH, Cleveland JJ and Bradt RC: ‘Effect of microcracking on the thermal diffusivity of Fe2TiO5’, J. Am. Ceram. Soc., 1976, 59, (5–6), 241–244.
  • Zapaa-Solvas E, Jayaseelan DD, Brown P and Lee WE: ‘Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra-high temperature’, J. Eur. Ceram. Soc., 2013, 33, 3467–3472.
  • Ikegami M, Matsumura K, Guo SQ, Kagawa Y and Yang JM: ‘Effect of SiC particle dispersion on thermal properties of SiC-particle dispersed ZrB2 matrix composites’, J. Mater. Sci., 2010, 45, 5420–5423.
  • Guo SQ, Kagawa Y, Nishimura T and Tanaka H: ‘Thermal and electric properties in hot pressed ZrB2–MoSi2–SiC composites’, J. Am. Ceram. Soc., 2007, 90, 2255–2258.
  • Thompson MJ, Fahrenholtz WG and Hilmas GE: ‘Elevated temperature thermal properties of ZrB2 with carbon additions’, J. Am. Ceram. Soc., 2012, 95, 1077–1085.
  • Smith DS, Fayette S, Grandjean S, Martin C, Telle R and Tonnessen T: ‘Thermal resistance of grain boundaries in alumina ceramics and refractories’, J. Am. Ceram. Soc., 2003, 86, 105–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.