250
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Graphene-based DNA sensors

, , , , , , & show all
Pages B163-B166 | Received 11 Oct 2014, Accepted 14 Oct 2014, Published online: 27 Oct 2014

References

  • Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A: ‘Electric field effect in atomically thin carbon films’, Science, 2004, 306, 666–669.
  • Shao Y, Wang J, Wu H, Liu J, Aksay IA and Lin Y: ‘Graphene based electrochemical sensors and biosensors: a review’, Electroanal., 2010, 22, 1027–1036.
  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L and Ruoff RS: ‘Large-area synthesis of high-quality and uniform graphene films on copper foils’, Science, 2009, 324, 1312–1314.
  • Cano-M'arquez A, Rodr'ıguez-Mac'ıas F, Campos-Delgado J, Espinosa-Gonz'alez C, Trist'an-L'opez F, Ram'ırez-Gonz'alez D, Cullen D, Smith D, Terrones M and Vega-Cant'u Y: ‘Ex-mwnts: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes’, Nano Lett., 2009, 9, 1527–1533.
  • Okamoto S, Ohno Y, Maehashi K, Inoue K and Matsumoto K: ‘Immunosensors based on graphene field-effect transistors fabricated using antigen-binding fragment’, Jpn J. Appl. Phys., 2012, 51, 06FD08.
  • Dong X, Shi Y, Huang W, Chen P and Li L.-J: ‘Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets’, Adv. Mater., 2010, 22, 1649–1653.
  • Chen T.-Y, Loan PT, Hsu C.-L, Lee Y.-H, Tse-Wei Wang J, Wei K.-H, Lin C.-T and Li L.-J: ‘Label-free detection of DNA hybridization using transistors based on CVD grown graphene’, Biosens. Bioelectron., 2013, 41, 103–109.
  • Thavanathan J, Huang NM and Thong KL: ‘Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide’, Biosens. Bioelectron., 2014, 55, 91–98.
  • Liu X, Qu X, Dong J, Ai S and Han R: ‘Electrochemical detection of DNA hybridization using a change in flexibility’, Biosens. Bioelectron., 2011, 26, 3679–3682.
  • Yin Z, He Q, Huang X, Zhang J, Wu S, Chen P, Lu G, Chen P, Zhang Q, Yan Q and Zhang H: ‘Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors’, Nanoscale, 2012, 4, 293–297.
  • Cai B, Wang S, Huang L, Ning Y, Zhang Z and Zhang G: ‘Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor’, ACS Nano., 2014, 8, 2632–2638.
  • Wen Y, Li FY, Dong X, Zhang J, Xiong Q and Chen P: ‘The electrical detection of lead ions using gold-nanoparticle- and DNAzyme-functionalized graphene device’, Adv. Healthcare Mater., 2013, 2, 271–274.
  • Li J and Lu Y: ‘A highly sensitive and selective catalytic DNA biosensor for lead Ions’, J. Am. Chem. Soc., 2000, 122, 10466–10467.
  • Jiang C, Ma M and Wang Y: ‘Using gallic acid-modified gold nanoassemblies to detect the Pb2+ of tea’, Anal. Methods, 2012, 4, 3570–3574.
  • Wei H, Li B, Li J, Dong S and Wang E: ‘DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes’, Nanotechnology, 2008, 19, 095501.
  • Li T, Dong S and Wang E: ‘A lead (II)-driven DNA molecular device for turn-on fluorescence detection of lead (II) ion with high selectivity and sensitivity’, J. Am. Chem. Soc., 2010, 132, 13156–13157.
  • Wu S, Lan X, Huang F, Luo Z, Ju H, Meng C and Duan C: ‘Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon’, Biosens. Bioelectron., 2012, 32, 293–296.
  • Bai J, Duan X and Huang Y: ‘Rational fabrication of graphene nanoribbons using a nanowire etch mask’, Nano Lett., 2009, 9, 2083–2087.
  • Safron NS, Brewer AS and Arnold MS: ‘Semiconducting two-dimensional graphene nanoconstriction arrays’, Small, 2011, 7, 492–498.
  • Ryu S, Maultzsch J, Han M, Kim P and Brus LE: ‘Raman spectroscopy of lithographically patterned graphene nanoribbons’, ACS Nano., 2011, 5, 4123–4130.
  • Han M, Ozyilmaz B, Zhang Y and Kim P: ‘Energy band-gap engineering of graphene nanoribbons’, Phys. Rev. Lett., 2007, 98, 206805.
  • Jiao L, Zhang L, Wang X, Diankov G and Dai H: ‘Narrow graphene nanoribbons from carbon nanotubes’, Nature, 2009, 458, 877–880.
  • Jiao L, Wang X, Diankov G, Wang H and Dai H: ‘Facile synthesis of high quality graphene nanoribbons’, Nat. Nanotechnol., 2010, 5, 321–325.
  • Dong H, Ding L, Yan F, Ji H and Ju H: ‘The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA’, Biomaterials, 2011, 32, 3875–3882.
  • Wu S, Lan X, Huang F, Luo Z, Ju H, Meng C and Duan C: ‘Selective electrochemical detection of cysteine in complex serum by graphene nanoribbon’, Biosens. Bioelectron., 2012, 32, 293–296.
  • Kim T, Park J, Jin HJ, Lee H, Byun KE, Lee CS, Kim KS, Hong BH, Kim TH and Hong S: ‘Graphene nanonet for biological sensing applications’, Nanotechnology, 2013, 24, 375302.
  • Sokolov AN, Yap FL, Liu N, Kim K, Ci L, Johnson OB, Wang H, Vosgueritchian M, Koh AL, Chen J, Park J and Bao Z: ‘Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapor deposition’, Nat. Commun., 2013, 4, 2402.
  • Reuven DG, Shashikala HBM, Mandal S, Williams MNV, Chaudhary J and Wang X: ‘Supramolecular assembly of DNA on graphene nanoribbons’, J. Mater. Chem. B, 2013, 1B, 3926–3931.
  • Liu Q, Yan Y, Yang X, Qian J, Cai J and Wang K: ‘Fe3O4-functionalized graphene nanoribbons: Preparation, characterization, and improved electrochemical activity’, J. Electroanal. Chem., 2013, 704, 86–89.
  • Cervantes-Sodi F, Csányi G, Piscanec S and Ferrari AC: ‘Edge-functionalized and substitutional doped graphene nanoribbons: electronic and spin properties’, Phys. Rev. B, 2008, 77B, 165427.
  • Kasianowicz JJ, Brandin E, Branton D and Deamer DW: ‘Characterization of individual polynucleotide molecules using a membrane channel’ Proc. Natl. Acad. Sci., 1996, 93, 13770–13773.
  • Howorka S and Siwy Z: ‘Nanopore analytics: sensing of single molecules’, Chem. Soc. Rev., 2009, 38, 2360–2384.
  • Metzker M: ‘Sequencing technologies - the next generation’, Nat. Rev. Genet., 2010, 11, 31–46.
  • Liu S, Zhao Q, Xu J, Yan K, Peng H, Yang F, You L and Yu D: ‘Fast and controllable fabrication of suspended graphene nanopore devices’, Nanotechnology, 2012, 23, 085301.
  • Sadeghi H, Algaragholy L, Pope T, Bailey S, Visontai D, Manrique D, Ferrer J, Garcia-Suarez V, Sangtarash S and Lambert CJ: ‘Graphene sculpturene nanopores for DNA nucleobase sensing’, J. Phys. Chem. B, 2014, 118B, 6908–6914.
  • Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson AT and Drndić M: ‘DNA translocation through Graphene Nanopores’, Nano Lett., 2010, 10, 2915–2921.
  • Garaj S, Liu S, Golovchenko JA and Branton O: ‘Molecule-hugging graphene nanopores’, Proc. Natl. Acad. Sci., 2013, 110, 12192–12196.
  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LM and Dekker C: ‘DNA translocation through graphene nanopores’, Nano Lett., 2010, 10, 3163–3167.
  • Venkatesan BM, Estrada D, Banerjee S, Jin X, Dorgan VE, Bae M.-H, Aluru NR, Pop E and Bashir R: ‘Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes’, ACS Nano., 2012, 6, 441–450.
  • Nelson T, Zhang B and Prezhdo OV: ‘Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device’, Nano Lett., 2010, 10, 3237–3242.
  • Lv W, Liu S, Li X and Wu R: ‘Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore’, Electrophoresis, 2014, 35, 1144–1151.
  • Girdhar A, Sathe C, Schulten K and Leburton J.-P: ‘Graphene quantum point contact transistor for DNA sensing’, Proc. Natl. Acad. Sci., 2013, 110, 16748–16753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.