1,503
Views
89
CrossRef citations to date
0
Altmetric
Research Papers

Antimicrobial materials with medical applications

, , , &
Pages B90-B95 | Received 03 Aug 2014, Accepted 10 Nov 2014, Published online: 20 Nov 2014

References

  • Weinstein RA: ‘Nosocomial infection update’, Emerg. Infect. Diseas., 1998, 4, 416–420.
  • Hellmann M, Mehta SD, Bishai DM, Mears SC and Zenilman JM: ‘The estimated magnitude and direct hospital costs of prosthetic joint infections in the United States, 1997 to 2004’, J. Arthropl., 2010, 25, 766–771.
  • Harris LG and Richards RG: ‘Staphylococci and implant surfaces: a review’, Injury, 2006, 37, (Suppl. 2), S3–14.
  • Darouiche RO: ‘Current concepts – treatment of infections associated with surgical implants’, New England J. Med., 2004, 350, 1422–1429.
  • Costerton JW: ‘Bacterial biofilms: a common cause of persistent infections’, Science, 1999, 284, 1318–1322.
  • Uckay I, Hoffmeyer P, Lew D and Pittet D: ‘Prevention of surgical site infections in orthopaedic surgery and bone trauma: state-of-the-art update’, J. Hosp. Infect., 2013, 84, 5–12.
  • Yin J.-M, Liu Z.-T, Zhao S.-C and Guo Y.-J: ‘Diagnosis, management, and prevention of prosthetic joint infections’, Frontiers Biosci. (Landmark edition), 2013, 18, 1349–1357.
  • Arciola C.R., Campoccia D., Speziale P., Montanaro L. and Costerton J.W. ‘Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials’, Biomaterials, 2012, 33, 5967–5982.
  • Lv W, Luo J, Deng Y and Sun Y: ‘Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery’, J. Biomed. Mater. Res. A, 2013, 101A, 447–455.
  • Bazaka K, Jacob MV, Crawford RJ and Ivanova EP: ‘Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms’, Appl. Microbiol. Biotechnol., 2012, 95, 299–311.
  • Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R and Nanci A: ‘Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives’, Nanoscale, 2011, 3, 335–353.
  • Xiao W, Gu YF, Wang DP, Wang WH, Pan HB and Lü WJ: ‘Application of borate glass in the field of biomaterials’, J. Clinic. Rehabilit. Tissue Eng. Res., 2009, 13, 6741–6744.
  • Sun L, Liu AX, Huang HY, Tao XJ, Zhao YB and Zhang ZJ: ‘Preparation and antibacterial properties of water-soluble Ag nanoparticles’, Acta Phys.-Chim. Sin., 2011, 20, 722–728.
  • Liu J, Lu Y, Yang F and Yu M: ‘The study of Zn2+/Ag+ compound inorganic antiseptic with sepiolite as the carrier’, J. Funct. Mater., 2013, 44, 536–539.
  • Sun L, Liu AX, Huang HY, Tao XJ, Zhao YB and Zhang ZJ: ‘Preparation and antibacterial properties of water-soluble Ag nanoparticles’, Acta Phys.-Chim. Sin., 2011, 20, 722–728.
  • Yang Q and Feng JG: ‘Preparation and exploratory application of ZnO/attapulgite composite antimicrobials’, China Non-Metall. Miner. Ind., 2010, 2, 26–29.
  • Li X, Xue T, He L, Zeng S, Fang CY, Sun JP and Qiu SY: ‘Properties of antibacterial polypropylene compound material with Ag-carrying phosphate glass’, Plastics, 2007, 36, 19–22.
  • Zhou YY, Zhang SH, Li Y and Li FP: ‘Preparation for Ag- carried porous antibacterial glass’, Optic. Techn., 2010, 36, 424–427.
  • Hu ZJ, Zhao Z and Wang XM: ‘Antibacterial properties and mechanism of nano-zinc oxide’, Chin. J. Tissue Eng. Res., 2012, 3, 527–530.
  • Xu TY: ‘Study on the composite material of nano-titanium dioxide/montmorillonite and its antibacterial performance’, Wuhan University of Technology, Wuhan, China, 2008.
  • Zhou XM and Xu W: ‘Preparation and properties of LDPE/MMT/PEG phase-change material’, Polym. Mater. Sci. Eng., 2011, 3, 143–146.
  • Mo ZL, Hu RR, Wang YW and He JX: ‘Review of antibacterial materials and their mechanisms’, Mater. Rev., 2014, 1, 50–52.
  • Hasan J, Crawford RJ and Ivanova EP: ‘Antibacterial surfaces: the quest for a new generation of biomaterials’, Trends Biotechnol., 2013, 31, 295–304.
  • Vasilev K, Cook J and Griesser HJ: ‘Antibacterial surfaces for biomedical devices’, Exp. Rev. Med. Dev., 2009, 6, 553–567.
  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA and Ali SF: ‘Metal-based nanoparticles and their toxicity assessment’, Wiley Interdiscipl. Rev.-Nanomed. Nanobiotechnol., 2010, 2, 544–568.
  • Gosheger G, Hardes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W and Von Eiff C: ‘Silver-coated megaendoprostheses in a rabbit model–an analysis of the infection rate and toxicological side effects’, Biomaterials, 2004, 25, 5547–5556.
  • Lee D, Cohen RE and Rubner MF: ‘Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles’, Langmuir, 2005, 21, 9651–9659.
  • Rojas IA, Slunt JB and Grainger DW: ‘Polyurethane coatings release bioactive antibodies to reduce bacterial adhesion’, J. Controll. Rel., 2000, 63, 175–189.
  • Song WH, Ryu HS and Hong SH: ‘Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation’, J. Biomed. Mater. Res. A, 2009, 88A, 246–254.
  • Blaker JJ, Nazhat SN and Boccaccini AR: ‘Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications’, Biomaterials, 2004, 25, 1319–1329.
  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN and Kim JO: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2000, 52, 662–668.
  • Albers CE, Hofstetter W, Siebenrock KA, Landmann R and Klenke FM: ‘In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations’, Nanotoxicology, 2013, 7, 30–36.
  • Mehtar S, Wiid I and Todorov SD: ‘The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study’, J. Hosp. Infect., 2008, 68, 45–51.
  • Espirito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ and Grass G: ‘Bacterial killing by dry metallic copper surfaces’, Appl. Environ. Microbiol., 2011, 77, 794–802.
  • Grass G, Rensing C and Solioz M: ‘Metallic copper as an antimicrobial surface’, Appl. Environ. Microbiol., 2011, 77, 1541–1547.
  • Espirito Santo C, Taudte N, Nies DH and Grass G: ‘Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces’, Appl. Environ. Microbiol., 2008, 74, 977–986.
  • Wilks SA, Michels H and Keevil CW: ‘The survival of Escherichia coli O157 on a range of metal surfaces’, Int. J. Food Microbiol., 2005, 105, 445–454.
  • Noyce JO, Michels H and Keevil CW: ‘Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment’, J. Hosp. Infect., 2006, 63, 289–297.
  • http://en.wikipedia.org/wiki/Antimicrobial_properties_of_copper [Accessed 22 August 2014]
  • Murata H, Koepsel RR, Matyjaszewski K and Russell AJ: ‘Permanent, non-leaching antibacterial surface–2: how high density cationic surfaces kill bacterial cells’, Biomaterials, 2007, 28, 4870–4879.
  • Kumar R and Munstedt H: ‘Silver ion release from antimicrobial polyamide/silver composites’, Biomaterials, 2005, 26, 2081–2088.
  • Tiller JC, Liao CJ, Lewis K and Klibanov AM: ‘Designing surfaces that kill bacteria on contact’, Proc. Natl Acad. Sci. USA, 2001, 98, 5981–5985.
  • Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M and Yazdankhah SP: ‘Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health’, Microb. Drug Resist., 2010, 16, 91–104.
  • Takenaka S, Tonoki T, Taira K, Murakami S and Aoki K: ‘Adaptation of Pseudomonas sp. strain 7–6 to quaternary ammonium compounds and their degradation via dual pathways’, Appl. Environ Microbiol., 2007, 73, 1797–1802.
  • Shah NJ, Hong J, Hyder MN and Hammond PT: ‘Osteophilic multilayer coatings for accelerated bone tissue growth’, Adv. Mater., 2012, 24, 1445–1450.
  • Ong JL and Chan DCN: ‘Hydroxyapatite and their use as coatings in dental implants: a review’, 2000, 28, 667–707.
  • Lazarinis S, Karrholm J and Hailer NP: ‘Effects of hydroxyapatite coating on survival of an uncemented femoral stem. A Swedish Hip Arthroplasty Register study on 4,772 hips’, Acta Orthop. 2011, 82, 399–404.
  • Nguyen LT, Haney EF and Vogel HJ: ‘The expanding scope of antimicrobial peptide structures and their modes of action’, Trends Biotechnol., 2011, 29, 464–472.
  • Siedenbiedel F and Tiller JC: ‘Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles’, Polymers, 2012, 4, 46–71.
  • Muñoz-Bonilla A and Fernández-García M: ‘Polymeric materials with antimicrobial activity’, Progress in Polymer Science, 2012, 37, 281–339.
  • Timofeeva L and Kleshcheva N: ‘Antimicrobial polymers: mechanism of action, factors of activity, and applications’, Appl. Microbiol. Biotechnol., 2011, 89, 475–492.
  • Visai L, Nardo LD, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR: ‘Titanium oxide antibacterial surfaces in biomedical devices’, Int. J. Artif. Org., 2011, 34, 929–946.
  • Pritchett JW: ‘One-component revision of failed hip resurfacing from adverse reaction to metal wear debris’, J. Arthropl., 2014, 29, 219–224.
  • NISSHIN STEEL CO., LTD.: ‘Improve the antibacterial properties of stainless steel and its manufacturing method’, China Patent CN1158363A, published 3 September 1997.
  • Yang K, Chen SH, Dong JS and lv MQ: ‘The Antibacterial Properties of Ferrite Antibacterial Stainless Steel’, Metall. Funct. Mater., 2005, 12, 6–9.
  • Yang K, Dong JS, Chen SH and Lv MQ: ‘The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels’, Chin. J. Mater. Res., 2006, 20, 523–527.
  • Lin H, Yin Y and Wang XL: ‘Structure and properties of Cu-contained antibacterial martensitic stainless steel’, Metall. Funct. Mater. 2007, 14, 14–17.
  • Nan L, Liu YQ, Yang WC, Xu H, Li Y, Lu MQ and Yang K: ‘Study on antibacterial properties of copper-containing antibacterial stainless steels’, Acta Metall. Sin., 2007, 43, 1065–1070.
  • Zhang D, Ren L, Zhang Y, Xue N, Yang K and Zhong M: ‘Antibacterial activity against Porphyromonas gingivalis and biological characteristics of antibacterial stainless steel’, Colloids Surf. B: Biointerf., 2013, 105, 51–57.
  • Chai HW, Guo L, Wang XT, Fu YP, Guan JL, Tan LL, Ren L and Yang K: ‘Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo’, J. Mater. Sci.-Mater. Med., 2011, 22, 2525–2535.
  • Llorens A, Lloret E, Picouet PA, Trbojevich R and Fernandez A: ‘Metallic-based micro and nanocomposites in food contact materials and active food packaging’, Trends Food Sci. Technol., 2012, 24, 19–29.
  • Liu F, Liu H, Li X, Zhao H, Zhu D, Zheng Y and Li C: ‘Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties’, Appl. Surf. Sci., 2012, 258, 4667–4671.
  • Matet M, Heuzey MC and Ajji A: ‘Morphology and antibacterial properties of plasticized chitosan/metallocene polyethylene blends’, J. Mater. Sci. 2014, 49, 5427–5440.
  • de Olyveira GM, Costa LMM, Leão AL, de Souza SF, Cherian BM, de Carvalho AJf, Pessan LA and Narine SS: ‘LDPE/EVA Composites for Antimicrobial Properties’, Molecul. Cryst. Liquid Cryst., 2012, 556, 168–175.
  • Saha N, Keskinbora K, Suvaci E and Basu B: ‘Sintering, microstructure, mechanical, and antimicrobial properties of HAp-ZnO biocomposites’, J. Biomed. Mater. Res. B: Appl. Biomater., 2010, 95, 430–440.
  • Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plećaš IB and Raičević S: ‘Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders’, Appl. Surf. Sci., 2010, 256, 6083–6089.
  • Mandal S, Sunilkumar B, Kumar A and Basu B: ‘Hot pressed silver doped hydroxyapatite biomaterials with bactericidal properties against magnetotactic bacteria’, Mater. Technol., 2014, 29, B21–B25.
  • Nath S, Kalmodia S and Basu B: ‘Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites’, J. Mater. Sci. Mater. Med., 2010, 21, 1273–1287.
  • Ciobanu CS, Iconaru SL, Le Coustumer P, Constantin LV and Predoi D: ‘Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria’, Nanoscale Res. Lett., 2012, 7, 324.
  • Kaounides L, Yu H and Harper T: ‘Nanotechnology innovation and apptications in textites industry: current markets and future growth trends’, Mater. Technol., 2007, 22, 209–237.
  • Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP and Jayakumar R: ‘Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings’, Int. J. Biol. Macromol., 2011, 49, 247–254.
  • Fan L, Yu L, Zhou Y, Pan X and Xu Y: ‘Preparation of novel alginate antibacterial blend fibers containing silver nanoparticles’, J. Wuhan Univ., 2008, 54, 682–686.
  • Tomšič B, Simončič B, Orel B, Žerjav M, Schroers H, Simončič A and Samardžija Z: ‘Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric’, Carbohydr. Polym., 2009, 75, 618–626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.