Publication Cover
Materials Technology
Advanced Performance Materials
Volume 31, 2016 - Issue 3
157
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Increased rate capability of Li+ doped LiNi0·5Mn1·5O4 prepared by a novel solution combustion synthesis

, , , , &
Pages 121-127 | Received 25 Dec 2014, Accepted 31 Mar 2015, Published online: 28 Mar 2016

References

  • Wu X. and Kim S.: ‘Improvement of electrochemical properties of LiNi0·5Mn1·5O4 spinel’, J. Power Sources, 2005, 109, 53–57.
  • Santhanam R. and Rambabu B.: ‘Research progress in high voltage spinel LiNi0·5Mn1·5O4 material’, J. Power Sources, 2010, 195, 5442–5451.
  • Kang B. and Ceder G.: ‘Battery materials for ultrafast charging and discharging’, Nature, 2009, 458, 190–193.
  • Liu G. Y., Kong X., Wang Q. B., Sun H. Y., Wang B. and Yi Z. Z.: ‘Low-temperature solution combustion synthesis of high performance LiNi0·5Mn1·5O4’, Ceram. Int., 2014, 40, 6447–6452.
  • Xiao J., Chen X. L., Sushko P. V., Sushko M. L., Kovarik L., Feng J. J., Deng Z. Q., Zheng J. M., Graff G. L., Nie Z. M., Choi D., Liu J., Zhang J. G. and Whittingham M. S.: ‘High-performance LiNi0·5Mn1·5O4 spinel controlled by Mn3+ concentration and site disorder’, Adv. Mater., 2012, 24, 2109–2116.
  • Fang H., Wang Z., Li X., Guo H. and Peng W.: ‘Low temperature synthesis of LiNi0·5Mn1·5O4 spinel’, Mater. Lett., 2006, 60, 1273–1275.
  • Chi L., Dinh N., Brutti S. and Scrosati B.: ‘Synthesis, characterization and electrochemical properties of 4·8 V LiNi0·5Mn1·5O4 cathode material in lithium-ion batteries’, Electrochim. Acta, 2010, 55, 5110–5116.
  • Hwang B., Wu Y., Venkateswarlu M., Cheng M. and Santhanam R.: ‘Influence of synthesis conditions on electrochemical properties of high-voltage Li1·02Ni0·5Mn1·5O4 spinel cathode material’, J. Power Sources, 2009, 93, 828–833.
  • Xiao L., Zhao Y., Yang Y., Ai X., Yang H. and Cao Y.: ‘Electrochemical properties of nano-crystalline LiNi0·5Mn1·5O4 synthesized by polymer-pyrolysis method’, J. Solid State Electrochem., 2008, 12, 687–691.
  • Amarilla J. M., Petrov K., Picó F., Avdeev G., Rojo J. M. and Rojas R. M.: ‘Sucrose-aided combustion synthesis of nanosized LiMn1·99 − yLiyM0·01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0·01 and 0·06) spinels: characterization and electrochemical behavior at 25 and at 55(C in rechargeable lithium cells’, J. Power Sources, 2009, 191, 591–600.
  • Amarilla J., Rojas R. and Rojo J.: ‘Understanding the sucrose-assisted combustion method: effects of the atmosphere and fuel amount on the synthesis and electrochemical performances of LiNi0·5Mn1·5O4 spinel’, J. Power Sources, 2011, 196, 5951–5959.
  • Stoyanova R., Zhecheva E. and Zarkova L.: ‘Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1 − yO2 solid solutions’, Solid State Ionics, 1994, 73, 233–240.
  • Fey G. T., Lu C. and Kumar T. P.: ‘Preparation and electrochemical properties of high-voltage cathode materials LiMyNi0·5 − yMn1·5O4 (M = Fe, Cu, Al, Mg; y = 0·0-0·4)’, J. Power Sources, 2003, 115, 332–345.
  • Liu J. H., Sun Z. Q., Xie J. N., Chen H. Y., Wu N. N. and Wu B. R.: ‘Synthesis and electrochemical properties of LiNi0·5 − xCuxMn1·5 − yAlyO4 (x = 0, 0·05, y = 0, 0·05) as 5 V spinel materials’, J. Power Sources, 2013, 240, 95–100.
  • Fey G. T., Lu C. Z. and Kumar T. P.: ‘Solid-state synthesis and electrochemical characterization of LiMyCr0·5 − yMn1·5O4 (M = Fe or Al; 0·0<y<0·4) spinels’, Mater. Chem. Phys., 2003, 80, 309–318.
  • Lee K. S., Myung S. T., Bang H. J., Chung S. J. and Sun Y. K.: ‘Co-precipitation synthesis of spherical Li1·05M0·05Mn1·9O4 (M = Ni,Mg,Al) spinel and its application for lithium secondary battery cathode, Electrochim’, Acta, 2007, 52, 5201–5206.
  • Taniguchi I. and Bakenov Z.: ‘Spray pyrolysis synthesis of nanostructured LiFexMn2 − xO4 cathode materials for lithium-ion batteries’, Powder Technol., 2005, 159, 55–62.
  • Arunkumar T. A. and Manthiram A.: ‘Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1·5 − yNi0·5 − zMy+zO4 (M = Li, Mg, Fe, Co, and Zn), Electrochem’, Solid-State Lett., 2005, 8, A403–A405.
  • Fergus J. W.: ‘Recent developments in cathode materials for lithium ion batteries’, J. Power Sources, 2010, 195, 939–954.
  • Fonseca C. P., Bellei M. A., Amaral F. A., Canobre S. C. and Neves S.: ‘Synthesis and characterization of LiMxMn2 − xO4 (M = Al, Bi and Cs ions) films for lithium ion batteries’, Energy Convers. Manage., 2009, 50, 1556–1562.
  • Chen G., Wilcox J. D. and Richardson T. J.: ‘Improving the performance of lithium manganese phosphate through divalent cation substitution’, Electrochem. Solid-State Lett., 2008, 11, A190–A194.
  • Heo J. B., Lee S. B., Cho S. H., Kim J., Park S. H. and Lee Y. S.: ‘Synthesis and electrochemical characterizations of dual doped Li1·05Fe0·997Cu0·003PO4’, Mater. Lett., 2009, 63, 581–583.
  • Ju S. H., Jang H. C. and Kang Y. C.: ‘LiCo1 − xAlxO2 (0 ≤ x ≤ 0·05) cathode powders prepared from the nanosized Co1 − xAlxOy precursor powders’, Mater. Chem. Phys., 2008, 112, 536–541.
  • Peramunage D. and Abraham K. M.: ‘Preparation and electrochemical characterization of overlithiated spinel LiMn2O4’, J. Electrochem. Soc., 1998, 145, 1131–1136.
  • Lide D. R.: ‘CRC handbook of chemistry and physics’; 1377; 2002, Boca Raton, FL, CRC Press LLC.
  • Nakai I., Shiraishi Y. and Nishikawa F.: ‘Development of a new in situ cell for the X-ray absorption fine structure analysis of the electrochemical reaction in a rechargeable battery and its application to the lithium battery material, Li1+yMn2-yO4, Spectrochim’, Acta B, 1999, 54B, 143–149.
  • Yi T., Xie Y., Zhu Y., Zhu R. and Ye M.: ‘High rate micron-sized niobium-doped LiMn1·5Ni0·5O4 as ultra high power positive-electrode material for lithium-ion batteries’, J. Power Sources, 2012, 211, 59–65.
  • Fang H., Li L. and Li G.: ‘A low-temperature reaction route to high rate and high capacity LiNi0·5Mn1·5O4’, J. Power Sources, 2007, 167, 223–227.
  • Jin Y., Lin Ch. and Duh J.: ‘Improving rate capability of high potential LiNi0·5Mn1·5O4 − x cathode materials via increasing oxygen non-stoichiometries’, Electrochim. Acta, 2012, 69, 45–50.
  • Wang L., Li H., Huang X. and Baudrin E.: ‘A comparative study of Fd − 3m and P4332 LiNi0·5Mn1·5O4’, Solid State Ionics, 2011, 193, 32–38.
  • Lee E., Nam K., Hu E. and Manthiram A.: ‘Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiMn1·5Ni0·5O4 spinel between 5·0 and 2·0 V’, Chem. Mater., 2012, 24, 3610–3620.
  • Patoux S., Daniel L., Bourbon C., Lignier H., Pagano C., Le Cras F., Jouanneau S. and Martinet S.: ‘High voltage spinel oxides for Li-ion batteries: from the material research to the application’, J. Power Sources, 2009, 189, 344–352.
  • Liu D., Hamel-Paquet J., Trottier J., Barray F., Gariépy V., Hovington P., Guerfi A., Mauger A., Julien C. M., Goodenough J. B. and Zaghi K.: ‘Synthesis of pure phase disordered LiMn1·45Cr0·1Ni0·45O4 by a post-annealing method’, J. Power Sources, 2012, 217, 400–406.
  • Shin D. W., Bridges C. A., Huq A., Paranthaman M. P. and Manthiram A.: ‘Role of cation ordering and surface segregation in high-voltage spinel LiMn1·5Ni0·5 − xMxO4 (M = Cr, Fe, and Ga cathodes for lithium-ion batteries’, Chem. Mater., 2012, 24, 3720–3731.
  • Myung S., Komaba S., Kumagai N., Yashiro H., Chung H. and Cho T. G: ‘Nano-crystalline LiNi0·5Mn1·5O4 synthesized by emulsion drying method’, Electrochim. Acta, 2002, 47, 2543–2547.
  • Lafont U., Locati C., Borghols W. J. H., Łasińska A., Dygas J., Chadwick A. V. and Kelder E. M.: ‘Nanosized high voltage cathode material LiMg0·05Ni0·45Mn1·5O4: structural, electrochemical and in situ investigation’, J. Power Sources, 2009, 189, 179–184.
  • Liu M. H., Huang H. T., Lin C. M., Chen J. M. and Liao S. C.: ‘Mg gradient-doped LiNi0·5Mn1·5O4 as the cathode material for Li-ion batteries’, Electrochim. Acta, 2014, 120, 133–139.
  • Yi T., Xie Y., Zhu Y., Zhu R. and Ye M.: ‘High rate micron-sized niobium-doped LiMn1·5Ni0·5O4 as ultra high power positive-electrode material for lithium-ion batteries’, J. Power Sources, 2012, 211, 59–65.
  • Striebel K. A., Sakai E. and Cairns E. J.: ‘Impedance studies of the thin film LiMn2O4/electrolyte interface’, J. Electrochem. Soc., 2002, 149, A61–A68.
  • Liu J. and Manthiram A.: ‘Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1·5Ni0·5O4’, J. Phys. Chem. C, 113C, 2009, 15073–15079.
  • Wang Y. Z., Shao X., Xu H., Xie M., Deng S., Wang H., Liu J. and Yan H.: ‘Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries’, J. Power Sources, 2013, 226, 140–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.