Publication Cover
Materials Technology
Advanced Performance Materials
Volume 31, 2016 - Issue 3
174
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Influence of doping and solid solution formation on photocatalytic activity of ZrW2O8 with cubic structure

, , , , &
Pages 153-159 | Received 29 Mar 2015, Accepted 07 Apr 2015, Published online: 29 Feb 2016

References

  • Yu H. G., Liu L., Wang X. F., Wang P., Yu J. G. and Wang Y. H.: The dependence of photocatalytic activity and photoinduced self-stability of photosensitive AgI nanoparticles, Dalton Trans., 2012, 41, 10405.
  • Wang X., Fu C., Wang P., Yu H. and Yu J.: Hierarchically porous metastable-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity, Nanotechnology, 2013, 24, 165602.
  • Sahoo P. P., Sumithra S., Madras G. and Row T. N. G.: Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV2O7, Inorg. Chem., 2011, 50, 8774.
  • Sunkara B. and Misra R. D. K.: Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system, Acta Biomater., 2008, 4, 273.
  • Rana S., Rawat J., Sorrenson M. and Misra R. D. K.: Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system, Acta Biomater., 2006, 2, 421.
  • Venkatasubramanian R., Srivastava R. S. and Misra R. D. K.: Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants, Mater. Sci. Technol., 2008, 24, 589.
  • Ramat J., Rana S., Srivastava R. S. and Misra R. D. K.: Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core, Mater. Sci. Eng. C, 2007, C27, 540.
  • Rawat J., Rana S., Sorensson M. M. and Misra R. D. K.: Anti-microbial activity of doped anatase titania coated nickel ferrite composite Nanoparticles, Mater. Sci. Technol., 2007, 23, 97.
  • Zhang F., Liu Y. J., Liu Q. H., Li Q., Li H., Cai X. Y. and Wang Y. D.: Synthesis and characterisation of Ni(OH)2 and NiO nanosheets and their removal properties of azo dyes from aqueous solution, Mater. Technol., 2013, 28, 310.
  • Cui Z. K., Zhang F. L., Zheng Z., Fa W. J. and Huang B. J.: Preparation and characterisation of Ag3PO4/BiOBr composites with enhanced visible light driven photocatalytic performance, Mater. Technol. Adv. Perform. Mater., 2014, 29, 214.
  • Yu Q., Guo S., Li X. and Zhang M.: Template free fabrication of porous g-C3N4/graphene hybrid with enhanced photocatalytic capability under visible light, Mater. Technol. Adv. Perform. Mater., 2014, 29, 172.
  • Chen Z. G., Zhu L., Xia J. X., Xu L., Li H. M., Zhang J., He M. Q. and Liu J.: Synthesis of flower-like Pd/BiOCl composites via reactable ionic liquid and their enhanced photocatalytic properties, Mater. Technol. Adv. Perform. Mater., 2014, 29, 245.
  • Wang X., Tian P. and Lin Y.: Hierarchically porous metastable-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity, J. Alloys Compd, 2015, 620, 228–232.
  • Song Y. I., Lim K. T. and Gun D.: Synthesis of PbMoO4 Nanoparticles by Microwave-Assisted Hydrothermal Process and Their Photocatalytic Activity, J. Nanosci. Nanotechnol., 2014, 14, 8502.
  • Mary T. A., Evans J. S. O. and Vogt T.: Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science, 1996, 272, 90.
  • Zhao R. Q., Yang X. J. and Wang H. L.: A novel route to synthesize cubic ZrW2−xMoxO8 (x=0–1.3) solid solutions and their negative thermal expansion properties, Solid State Chem., 2007, 180, 3160.
  • Evans J. S. O., Hu Z. and Jorgensen J. D.: Compressibility,phase transitions,and oxygen migration in zirconium tungstate, ZrW2O8, Science, 1997, 275, 61.
  • Jiang L., Liu H., Yuan J. and Shangguan W.: Hydrothermal preparation and photocatalytic water splitting properties of ZrW2O8, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2010, 25, 919.
  • Evans J. S. O., Mary T. A. and Sleight A. W.: Negative thermal expansion materials, Phys. B, 1997, 241, 311.
  • Usai S., Obregón S., Becerro A. I. and Colón G.: Monoclinic-tetragonal heterostructured BiVO4 by yttium doping with improved photocatalytic activity, J. Phys. Chem. C, 2013, 117C, 24479.
  • Lee M., Yun H. J., Yu S. and Yi J.: Enhancement in photocatalytic oxygen evolution via water oxidation under visible light on nitrogen-doped TiO2 nanorods with dominant reactive {102} facets, Catal. Commun., 2014, 43, 11.
  • Mary T. A. and Sleight A. W.: Bulk thermal expansion for tungstate and molybdates of the type A2M3O12, J. Mater. Res., 1999, 14, 912.
  • Sumithra S. and Umarji A. M.: Role of crystal structure in the bulk thermal expansion of Ln2W3O12 (Ln=La, Nd, Dy, Y, Er, Yb), Solid State Sci., 2004, 6, 1313.
  • Liu Q., Sun S., Li H., Yang X., Shen H., Cheng X. and Dong S.: Preparation, characterization and photocatalytic activities of ZrWMoO8/Ag composites with core–shell structure, Appl. Surf. Sci., 2012, 261, 593.
  • Liu Q., Yang J., Cheng X., Sun X. and Zang C.: Abnormal positive thermal expansion in Mo substituted ZrW2O8, Phys. B, 2011, 406, 3458.
  • Ding Y., Wan Y., Min Y. L., Zhang W. and Yu S. H.: General synthesis and phase control of metal molybdate hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties, Inorg. Chem., 2008, 47, 7813.
  • Yu H., Hiroshi I., Yoshiki S., Yasuhiro H., Yasushi K., Masahiro M. and Kazuhito H.: An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO2 Photocatalyst, J. Phys. Chem. C, 2010, 114C, 16481.
  • Gao B., Liu L., Liu J. and Yang F.: Photocatalytic degradation of 2,4,6-tribromophenol on Fe2O3 or FeOOH doped ZnIn2S4 heterostructure: Insight into degradation mechanism, Appl. Catal. B, 2014, 147, 929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.