131
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of fatigue response of thermally aged reduced activation ferritic-martensitic steel based on finite element analysis

, , , &
Pages 170-178 | Received 22 Jul 2015, Accepted 14 Aug 2015, Published online: 10 Feb 2016

References

  • Klueh RL, Ehrlich K, Abe F. Ferritic/ martensitic steels: promises and problems. J. Nucl. Mater. 1992;191:116–124.
  • Andreani R, Gasparotto M. Overview of fusion nuclear technology in Europe. Fusion Eng. Des. 2002;61:27–36.
  • Saroja S, Dasgupta A, Divakar R, Raju S, Mohandas E, Vijayalakshmi M, Bhanu K. Sankara Rao and Baldev Raj: ‘Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors’. J. Nucl. Mater. 2011;409:131–139.
  • Mathew MD, Vanaja J, Laha K, Varaprasad G. Reddy, K.S. Chandravathi and K. Bhanu Sankara Rao: ‘Tensile and creep properties of reduced activation ferritic–martensitic steel for fusion energy application’. J. Nucl. Mater. 2011;417:77–80.
  • Butterworth GL. Objectives and prospects for low activation materials. J. Nucl. Mater. 1991;179–181:135–142.
  • Fernandez P, Garcia-Mazario M, Lancha AM, Lapena J. Grain boundary microchemistry and metallurgical characterization of Eurofer’97 after simulated service conditions. J. Nucl. Mater. 2004;329:273–277.
  • Li Y, Nagasaka T, Muroga T. Long-term thermal stability of reduced activation ferritic/martensitic steels as structure materials of fusion blanket. Plasma Fusion Res. 2010;5:S1036.
  • Dunne F, Petrinic N. Introduction to computational plasticity. Oxford University Press; 2005.
  • Hosseini E, Holdsworth SR, Kuhn I, Mazza E. Temperature dependent representation for Chaboche kinematic hardening model. Mat. High Temp. 2015;32:404–412.
  • Smith DJ. Simulating the cyclic mechanical response of titanium alloy 834 at 630°C. Mat. High Temp. 2001;18:153–162.
  • Rouse JP, Hyde CJ, Sun W, Hyde TH. Effective determination of cyclic-visco-plasticity material properties using an optimization procedure and experimental data exhibiting scatter. Mat. High Temp. 2013;30:117–128.
  • Chaboche JL. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plasticity. 2008;24:1642–1693.
  • Dutta A, Dhar S, Acharyya SK. Material characterization of 316 SS in low cycle fatigue loading. J. Mater. Sci. 2010;45:1782–1789.
  • Firat Mehmet. Cyclic plasticity modeling and finite element analysis of a circumferentially notched round bar under combined axial and torsion loadings. Mater. Des. 2012;34:842–852.
  • Kujawski D. A fatigue failure criterion based on strain energy density. Theoretical Appl. Mech. 1989;7:15–22.
  • Marmy Pierre, Kruml Tomas. Low cycle fatigue of Eurofer 97. J. Nucl. Mater. 2008;377:52–58.
  • Aktaa J, Schmitt R. High temperature deformation and damage behavior of RAFM steels under low cycle fatigue loading: Experiments and modeling. Fusion Eng. Des. 2006;81:2221–2231.
  • Giordana MF, Alvarez-Armas I, Armas A. Microstructural characterization of EUROFER 97 during low-cycle fatigue. J. Nucl. Mater. 2012;424:247–251.
  • Nagesha A, Valsan M, Kannan R, Bhanu K. Sankara Rao and S.L. Mannan: ‘Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr-1Mo ferritic steel’. Int. J. Fatigue. 2002;24:1285–1293.
  • Kim S, Weertman JR. Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue. Metall. Trans. A. 1988;19:999–1007.
  • Prat O, Garcia J, Rojas D, Carrasco C, Kaysser-Pyzalla AR. Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics. Mat. Sci. Engg. A. 2010;527:5976–5983.
  • [22] R. Mythili, Ravikirana, J.Vanaja, K.Laha, S.Saroja, T.Jayakumar, M.D.Mathew and E.Rajendrakumar: ‘Microstructural modifications due to tungsten and tantalum in 9Cr reduced activation ferritic martensitic steels on creep exposure’, Procedia Engg., 2013, 55, 295– 299.
  • Vanaja J, Laha K, Mythili R, Chandravathi KS, Saroja S, Mathew MD. Creep deformation and rupture behaviour of 9Cr-1W-0.2V-0.06Ta reduced activation ferritic- martensitic steel. Mater Sci Eng A. 2012;533:17–25.
  • Okamura H, Ohtani R, Saito K, Kimura K, Ishii R, Fujiyama K, Hongo S, Iseki T, Uchida H. Basic investigation for life assessment technology of modified 9Cr-1Mo steel. Nucl. Eng. Des. 1999;193:243–254.
  • Maciejewski K, Ghonem H. Isotropic and kinematic hardening as functions of gamma prime precipitates in a nickel-based superalloy. Int. J. Fatigue. 2014;68:123–135.
  • Fribourg G, Brechet Y, Deschamps A, Simar A. Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Mat. 2011;59:3621–3635.
  • Wang SS, Chang L, Wang L, Wang T, Wu YD, Si JJ, Zhu J, Zhang MX, Hui XD. Microstructural stability and short-term creep properties of 12Cr-W-Mo-Co steel. Mat. Sci. Eng. A. 2015;622:204–211.
  • Cornet C, Zhao LG, Tong J. A study of cyclic behaviour of a nickel-based superalloy at elevated temperature using a viscoplastic-damage model. Int. J. Fatigue. 2011;33:241–249.
  • Y.P.Gong, C.J.Hyde, W. Sun and T.H.Hyde: ‘Determination of material properties in the Chaboche unified viscoplasticity model’, Proc. IMechE Vol. 224 Part L: J. Materials: Design and Applications, 2010, pp 19– 29.
  • Tong J, Zhan Z-L, Vermeulen B. Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations. Int. J. Fatigue. 2004;26:829–837.
  • Halford GJ. The energy required for fatigue. J. Mater. 1966;1:3–18.
  • Ellyin F, Kujawski D. Plastic strain energy in fatigue failure. ASME J. Press. Ves. Technol. 1984;106:342–347.
  • Lefebvre D, Ellyin F. Cyclic response and inelastic strain energy in low cycle fatigue. Int. J. Fatigue. 1984;6:9–15.
  • Sivaprasad S, Paul SK, Das A, Narasiah N, Tarafder S. Cyclic plastic behaviour of primary heat transport piping materials: Influence of loading schemes on hysteresis loop. Mater. Sci. Eng. A. 2010;527:6858–6869.
  • Mughrabi H, Christ H-J. Cyclic deformation and fatigue of selected ferritic and austenitic steels: specific aspects. ISIJ Int. 1997;37:1154–1169.
  • Samir Chandra Roy. Sunil Goyal, R. Sandhya and S.K. Ray: ‘Low cycle fatigue life prediction of 316 L(N) stainless steel based on cyclic elasto-plastic response’. Nucl. Eng. Des. 2012;253:219–225.
  • Ye Duyi. S. Matsuoka, N. Nagashima and N. Suzuki: ‘The low cycle fatigue, deformation and final fracture of an austenitic stainless steel’. Mater. Sci. Eng. A. 2006;415:104–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.