Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 53, 2014 - Issue 3
271
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Use of elastic constants based on ab initio computation in materials optimisation of austenitic stainless steels

&
Pages 282-291 | Received 20 Feb 2014, Accepted 04 Apr 2014, Published online: 13 Jun 2014

References

  • Sandstrom R: ‘Merit parameters in materials optimization’, Mater. Des., 1992, 13, (3), 131–137.
  • Sandstrom R: ‘Control area diagrams in materials optimization’, Mater. Des., 1992, 13, (4), 195–202.
  • Speich GR, Schwoeble AJ and Leslie WC: ‘Elastic constants of binary iron-base alloys’, Metall. Trans., 1972, 3, (8), 2031–2037.
  • Bohnenkamp U and Sandstrom R: ‘Evaluation of the elastic modulus of steels’, Steel Res., 2000, 71, (3), 94–99.
  • Vitos L, Korzhavyi PA and Johansson B: ‘Modeling of alloy steels’, Mater. Today, 2002, 5, (10), 14–23.
  • Zander J and Sandstrom R: ‘Materials selection for a cooling plate using control area diagrams’, Mater. Des., 2011, 32, (10), 4866–4873.
  • Zander J and Sandstrom R: ‘Merit exponents and control area diagrams in materials selection’, Mater. Des., 2011, 32, (10), 4850–4856.
  • Sandström R: ‘Systematic selection of materials in light weight design’, Proc. IV Scand. Symp. on ‘Materials science’, Trondheim, Norway, 1986, 255–268.
  • Ashby MF: ‘Multi-objective optimization in material design and selection’, Acta Mater., 2000, 48, (1), 359–369.
  • Zander J and Sandström R: ‘Materials selection with several sizing variables taking environmental impact into account’, Mater. Des., 2012, 37, 243–250.
  • Ashby MF: ‘Materials selection in mechanical design’, 4th edn; 2011, Oxford, Butterworth-Heinemann.
  • Landau LLLD and Lifshitz EM: ‘Course of theoretical physics’, Vol. 7, ‘Theory of elasticity’; 1986, Oxford, Pergamon.
  • Nye JF: ‘Physical properties of crystals: their representation by tensors and matrices’; 1985, Oxford, Oxford University Press.
  • Zener C: ‘Elasticity and an elasticity of metals’; 1948, Chicago, IL, The University of Chicago Press.
  • Hohenberg P and Kohn W: ‘Inhomogeneous electron gas’, Phys. Rev., 1964, 136, B864–B871.
  • Kohn W and Sham LJ: ‘Self-consistent equations including exchange and correlation effects’, Phys. Rev., 1965, 140, A1133–A1138.
  • Mermin ND: ‘Thermal properties of the inhomogeneous electron gas’, Phys. Rev., 1965, 137, A1441–A1443.
  • Baroni S, de Gironcoli S, Dal Corso A and Gianozzi P: ‘Phonons and related crystal properties from density functional perturbation theory’, Rev. Mod. Phys., 2001, 73, 515–562.
  • Hickel T, Grabowski B, Körmann F and Neugebauer J: ‘Advancing density functional theory to finite temperatures: methods and applications in steel design’, J. Phys.: Condens. Matter, 2012, 24, 053202.
  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A, Smogunov A, Umari P and Wentzcovitch R: ‘QUANTUM ESPRESSO: a modular and open-source software’, J. Phys.: Condens. Matter, 2009, 21, 395502.
  • Kresse G and Furthmüller J: ‘Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set’, Phys. Rev. B, 1996, 54B, 11169–11186.
  • Singh D: ‘Planewaves, pseudopotentials, and the LAPW method’; 1994, Boston, MA, Kluwer Academic.
  • Wills JM, Alouani M, Andersson P, Delin A, Eriksson O and Grechnyev O: ‘Full-potential electronic structure method: energy and force calculations with density functional and dynamical mean field theory’; 2010, Berlin, Springer-Verlag.
  • Asato M, Settels A, Hoshino T, Asada T, Blügel S, Zeller R and Dederichs PH: ‘Full-potential KKR calculations for metals and semiconductors’, Phys. Rev. B, 1999, 60B, 5202–5210.
  • Vitos L: ‘Computational quantum mechanics for materials engineers’; 2007, London, Springer-Verlag.
  • Turchi PEA, Abrikosov IA, Burton B, Fries SG, Grimvall G, Kaufman L, Korzhavyi P, Rao Manga V, Ohno M, Pisch A, Scott A and Zhang W: ‘Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology’, Calphad, 2007, 31, 4–27.
  • Perdew JP, Burke K and Ernzerhof M: ‘Generalized gradient approximation made simple’, Phys. Rev. Lett., 1996, 77, 3865–3868.
  • Kurth S, Perdew JP and Blaha P: ‘Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs’, Int. J. Quantum Chem., 1999, 75, 899–909.
  • Pajer J, Marsman M, Hummer K, Kresse G, Gerber IC and Ángyán JG: ‘Screened hybrid density functionals applied to solids’, J. Chem. Phys., 2006, 124, 154709.
  • Haas P, Tran F and Blaha P: ‘Calculation of the lattice constant of solids with semilocal functionals’, Phys. Rev. B, 2009, 79B, 085104.
  • Haas P, Tran F, Blaha P, Schwatz K and Laskowski R: ‘Insight into the performance of GGA functionals for solid-state calculations’, Phys. Rev. B, 2009, 80B, 195109.
  • Fuchs K: ‘A quantum mechanical calculation of the elastic constants of monovalent metals’, Proc. R. Soc. Lond. Ser. A, 1936, 153A, (880), 622–639.
  • Mehl MJ, Klein BM and Papaconstantopoulos DA: ‘First principles calculations of elastic properties of metals’, in ‘Intermetallic compounds: principles and practice’, Vol. I, ‘Principles’, (ed. Westbrook J H and Fleischer R L), 195–210; 1995, London, John Wiley and Sons.
  • Söderlind P, Eriksson O, Wills JM and Boring AM: ‘Theory of elastic constants of cubic transition metals and alloys’, Phys. Rev. B, 1993, 48B, 5844–5851.
  • Söderlind P, Ahuja R, Eriksson O, Wills JM and Johansson B: ‘Crystal structure and elastic-constant anomalies in the magnetic 3d transition metals’, Phys. Rev. B, 1994, 50B, 5918–5927.
  • Le Page Y and Saxe P: ‘Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress’, Phys. Rev. B, 2002, 65B, 104104.
  • Sluiter MHF, Weinert M and Kawazoe Y: ‘Force constants for substitutional alloys’, Phys. Rev. B, 1999, 59B, 4100–4111.
  • van de Walle A: ‘A complete representation of structure–property relationships in crystals’, Nat. Mater., 2008, 7, 455–458.
  • van de Walle A: ‘Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit’, Calphad, 2009, 33, 266–278.
  • von Pezold J, Dick A, Friák M and Neugebauer J, ‘Generation and performance of specials quasirandom structures for studying the elastic properties of random alloys: application to Al–Ti’, Phys. Rev. B, 2010, 81B, 094203.
  • Tasnádi F, Abrikosov IA, Rogström L, Almer J, Johansson MP and Odén M, ‘Significant elastic anisotropy in Ti1−xAlxN alloys’, Appl. Phys. Lett., 2010, 97, 231902
  • Tasnádi F, Odén M, and Abrikosov IA: ‘Ab initio elastic tensor of cubic Ti0·5Al0·5N alloys: dependence of elastic constants on size and shape of the supercell model and their convergence’, Phys. Rev. B, 2012, 85B, 144112.
  • Soven P: ‘Coherent-potential model of substitutional disordered alloys’, Phys. Rev., 1967, 156, 809–813.
  • Gyorffy BL: ‘Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys’, Phys. Rev. B, 1972, 5B, 2382–2384.
  • Johnson DD, Nicholson DM, Pinski FJ, Györffy BL and Stocks GM: ‘Total-energy and pressure calculations for random substitutional alloys’, Phys. Rev. B, 1990, 41B, 9701–9716.
  • Magri R, Wei S-H and Zunger A: ‘Ground-state structures and the random-state energy of the Madelung lattice’, Phys. Rev. B, 42B, 11388–11391.
  • Abrikosov IA, Vekilov YH, Korzhavyi PA, Ruban AV and Shilkrot LE: ‘Ab initio calculations of the electronic topological transition in Li–Mg alloys’, Solid State Commun., 1992, 83, 867–870.
  • Johnson DD and Pinski FJ: ‘Inclusion of charge correlations in calculations of the energetics and electronic structure for random substitutional alloys’, Phys. Rev. B, 1993, 48B, 11553–11560.
  • Korzhavyi PA, Ruban AV, Abrikosov IA and Skriver HL: ‘Madelung energy for random metallic alloys in the coherent potential approximation’, Phys. Rev. B, 1995, 51B, 5773–5780.
  • Abrikosov IA, Niklasson AMN, Simak SI, Johansson B, Ruban AV and Skriver HL: ‘Order-N Green’s function technique for local environment effects in alloys’, Phys. Rev. Lett., 1996, 76, 4203–4206.
  • Abrikosov IA, Simak SI, Johansson B, Ruban AV and Skriver HL: ‘Locally self-consistent Green’s function approach to the electronic structure problem’, Phys. Rev. B, 1997, 56B, 9319–9334.
  • Ruban AV and Skriver HL: ‘Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation’, Phys. Rev. B, 2002, 66B, 024201.
  • Ruban AV, Simak SI, Korzhavyi PA and Skriver HL: ‘Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations’, Phys. Rev. B, 2002, 66B, 024202.
  • Vitos L: ‘Total-energy method based on the exact muffin-tin orbitals theory’, Phys. Rev. B, 2001, 64B, 014107.
  • Kollàr J, Vitos L and Skriver HL: ‘From ASA towards the full potential’, in ‘Electronic structure and physical properties of solids: the uses of the LMTO method’, (ed. Dreyssè H), 85–113; 2000, Berlin, Springer-Verlag.
  • Vitos L, Abrikosov IA and Johansson B: ‘Anisotropic lattice distortions in random alloys from first-principles theory’, Phys. Rev. Lett., 2001, 87, 156401.
  • Wildberger K, Lang P, Zeller R and Dederichs PH: ‘Fermi–Dirac distribution in ab initio Green’s-function calculations’, Phys. Rev. B, 1995, 52B, 11502–11508.
  • Baroni S, Gianozzi P and Isaev EI: ‘Density-functional perturbation theory for quasi-harmonic calculations’, Rev. Mineral. Geochem., 2010, 71, 39–57.
  • Hammerschmidt T, Abrikosov IA, Alfè D, Fries SG, Höglund L, Jacobs MHG, Koßmann J, Lu X-G and Paul G: ‘Including the effects of pressure and stress in thermodynamic functions’, Phys. Status Solidi B, 2014, 251B, 81–96.
  • Moruzzi VL, Janak JF and Schwarz K: ‘Calculated thermal properties of metals’, Phys. Rev. B, 1988, 37B, 790–799.
  • Korzhavyi PA, Ruban AV, Simak SI and Vekilov YK: ‘Electronic structure, thermal, and elastic properties of Al–Li random alloys’, Phys. Rev. B, 1994, 49B, 14229–14237.
  • Vocadlo L: ‘Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core?’, Earth Planet. Sci. Lett., 2007, 254, 227–232.
  • Steneteg P, Hellman O, Vekilova OYu, Shulumba N, Tasnádi F and Abrikosov IA: Phys. Rev. B, 2013, 87B, 094114.
  • Ruban AV and Abrikosov IA: ‘Configurational thermodynamics of alloys from first principles: effective cluster interactions’, Rep. Prog. Phys., 2008, 71, 046501.
  • Bolef DI and de Klerk J: ‘Anomalies in the elastic constants and thermal expansion of chromium single crystals’, Phys. Rev., 1963, 129, 1063–1067.
  • Dever DJ: ‘Temperature dependence of the elastic constants in α-iron single crystals: relationship to spin order and diffusion anomalies’, J. Appl. Phys., 1972, 43, 3293–3301.
  • Lähteenkorva EE and Lenkkeri JT: ‘Effects of magnetic order on elastic moduli of chromium’, J. Phys. F: Metal Phys., 1981, 11F, 767–773.
  • Lichtenstein AI, Katsnelson MI and Kotliar G: ‘Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory’, Phys. Rev. Lett., 2001, 87, 067205.
  • Leonov I, Poteryaev AI, Anisimov VI and Vollhardt D: ‘Calculated phonon spectra of paramagnetic iron at the α–γ phase transition’, Phys. Rev. B, 2012, 85B, 020401(R).
  • Igoshev PA, Efremov AV, Poteryaev AI, Katanin AA and Anisismov VI: ‘Magnetic fluctuations and effective magnetic moments in γ-iron due to electronic structure peculiarities’, Phys. Rev. B, 2013, 88B, 155120.
  • Belozerov AS, Leonov I and Anisimov VI: ‘Magnetism of iron and nickel from rotationally invariant Hirsch–Fye quantum Monte Carlo calculations’, Phys. Rev. B, 2013, 87B, 125138.
  • Gyorffy BL, Pindor AJ, Staunton JB, Stocks GM and Winter H: ‘A first-principles theory of ferromagnetic phase transitions in metals’, J. Phys F: Met. Phys., 1985, 15F, 1337–1386.
  • Vitos L, Korzhavyi PA and Johansson B: ‘Elastic property maps of austenitic stainless steels’, Phys. Rev. Lett., 2002, 88, 155501.
  • Vitos L, Korzhavyi PA and Johansson B: ‘Stainless steel optimization from quantum mechanical calculations’, Nat. Mater., 2003, 2, 25–28.
  • Vitos L, Korzhavyi PA and Johansson B: ‘Evidence of large magnetostructural effects in austenitic stainless steels’, Phys. Rev. Lett., 2006, 96, 117210.
  • Zhang H, Punkkinen MPJ, Johansson B, Hertzman S and Vitos L: ‘Single-crystal elastic constants of ferromagnetic bcc Fe-based random alloys from first-principles theory’, Phys. Rev. B, 2010, 81B, 184105.
  • Razumovskiy VI, Ruban AV and Korzhavyi PA: ‘Effect of temperature on the elastic anisotropy of pure Fe and Fe0:9Cr0:1 random alloy’, Phys. Rev. Lett., 2011, 107, 205504.
  • Zhang H, Johansson B and Vitos L: ‘Density-functional study of paramagnetic iron’, Phys. Rev. B, 2011, 84B, 140411.
  • Razumovskiy VI, Ruban AV and Korzhavyi PA: ‘First-principles study of elastic properties of Cr- and Fe-rich Fe–Cr alloys’, Phy. Rev. B, 2011, 84B, 024106.
  • Reeh S, Music D, Ekholm M, Abrikosov IA and Schneider JM: ‘Elastic properties of fcc Fe–Mn–X (X = Cr, Co, Ni, Cu) alloys from first-principles calculations’, Phys. Rev. B, 2013, 87B, 224103.
  • Korzhavyi PA, Sundman B, Selleby M and Johansson B: ‘Atomic, electronic, and magnetic structure of iron-based sigma-phases’, in ‘Integrative and interdisciplinary aspects of intermetallics’, Vol. 842, Materials Research Society Symposium Proceedings, (eds. Mills M J, Clemens H, Fu C and Inui H), 517–522; 2005, Warrendale, PA, MRS.
  • Okatov SV, Gornostyrev YN, Lichtenstein AI and Katsnelson MI: ‘Magnetoelastic coupling in γ-iron investigated within an ab initio spin spiral approach’, Phys. Rev. B, 2011, 84B, 214422.
  • Ruban AV and Razumovskiy VI: ‘Spin-wave method for the total energy of paramagnetic state’, Phys. Rev. B, 2012, 85B, 174407.
  • Körmann F, Dick A, Grabowski B, Hickel T and Neugebauer J: ‘Atomic forces at finite magnetic temperatures: phonons in paramagnetic iron’, Phys. Rev. B, 2012, 85B, 125104.
  • Körmann F, Breidi AAH, Dudarev SL, Dupin N, Ghosh G, Hickel T, Korzhavyi P, Muñoz JA and Ohnuma I: ‘Lambda transitions in materials science: recent advances in CALPHAD and first-principles modelling’, Phys. Status Solidi B, 2014, 251B, 53–80.
  • Mehl MJ, Klein BM and Papaconstantopoulos DA: in ‘Intermetallic compounds: principles and practice’, Vol. I, ‘Principles’, (eds. Westbrook J H and Fleischer R L), 195–210; 1995, London, Wiley.
  • Ledbetter HM: ‘Estimation of Debye temperatures by averaging elastic coefficients’, J. Appl. Phys., 1973, 44, (4), 1451–1454.
  • Voigt W: ’Ueber die Beziehungen zwischen den beiden Elasticitetskonstanten isotroper Körper’, Ann. Phys. (Leipzig), 1889, 38, 573.
  • Reuss A: ’Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle’, Z. Angew. Math. Mech., 1929, 9, 49.
  • Hashin Z and Shtrikman S: ‘A variational approach to the theory of the elastic behaviour of polycrystals’, J. Mech. Phys. Solids, 1962, 10, 343.
  • Johansson B, Vitos L and Korzhavyi PA: ‘Chemical composition-elastic property maps of austenitic stainless steels’, Solid State Sci., 2003, 5, (6), 931–936.
  • Ledbetter HM and Kim SA: ‘Molybdenum effect on Fe–Cr–Ni-alloy elastic constants’, J. Mater. Res., 1988, 3, 40–44.
  • Sandström R, Farooq M and Zurek J: ‘Basic creep models for 25Cr20NiNbN austenitic stainless steels’, Mater. Res. Innov., 2013, 17, (5), 355–359.
  • Bohnenkamp U and Sandstrom R: ‘Evaluation of the density of steels’, Steel Res., 2000, 71, (3), 88–93.
  • Goedkoop M, Effting S and Collignon M: ‘The Eco-indicator 99 – a damage oriented method for life cycle impact assessment’, Manual for designers, 2nd edn; 2000, Amersfort, PRé Consultants BV.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.