918
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Error augmentation as a possible technique for improving upper extremity motor performance after a stroke – a systematic review

&
Pages 116-125 | Received 06 Mar 2015, Accepted 15 Aug 2015, Published online: 08 Feb 2016

References

  • Huang V, Krakauer J. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009;6:5.
  • Alexoulis-Chrysovergis AC, Weightman A, Hodson-Tole EF, Deconinck FJ. Error augmented robotic rehabilitation of the upper limb – a review. Neurotechnix, 2013 - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics, pp. 167–178.
  • Molier BI, Prange GB, Krabben T, Stienen A, van der Kooij H, Buurke JH, et al. Effect of position feedback during task-oriented upper-limb training after stroke: five-case pilot study. J Rehabil Res Dev. 2011;48(9):1109–1118.
  • Abdollahi F, Rozario S, Kenyon R, Patton J, Case E, Kovic M, et al. Arm control recovery enhanced by error augmentation. IEEE Int Conf Rehabil Robot. 2011;2011:5975504.
  • Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006;168(3):368–383.
  • Rozario SV, Housman S, Kovic M, Kenyon RV, Patton JL. Therapist-mediated post-stroke rehabilitation using haptic/graphic error augmentation. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1151–1156.
  • Wei Y, Bajaj P, Scheidt R, Patton J. Visual error augmentation for enhancing motor learning and rehabilitative relearning. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005, 1501152, pp. 505–510.
  • Huang FC, Patton JL, Mussa-Ivaldi FA. Manual skill generalization enhanced by negative viscosity. J Neurophysiol. 2010;104(4):2008–2019.
  • PEDro Physiotherapy Evidence Database. Available from: http://www.pedro.org.au/english/faq/#question_five (accessed 2015 July 27).
  • Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
  • Kao P, Srivastava S, Agrawal SK, Scholz JP. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals. Gait Posture. 2013;37(1):113–120.
  • Domingo A, Ferris DP. The effects of error augmentation on learning to walk on a narrow balance beam. Exp Brain Res. 2010;206(4):359–370.
  • Hwang AD, Peli E. An augmented-reality edge enhancement application for google glass. Optom Vis Sci. 2014;91(8):1021–1030.
  • Sung C, O’Malley MK. Effect of progressive visual error amplification on human motor adaptation. IEEE Int Conf Rehabil Robot. 2011;2011:5975399.
  • Sharp I, Huang F, Patton J. Visual error augmentation enhances learning in three dimensions. J Neuroeng Rehabil. 2011;8(1):1–6.
  • Wang F, Barkana DE, Sarkar N. Impact of visual error augmentation when integrated with assist-as-needed training method in robot-assisted rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18(5):571–579.
  • Celik O, Powell D, O’Malley M. Impact of visual error augmentation methods on task performance and motor adaptation. 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009 5209632, pp. 793–798.
  • Patton J, Wei Y, Bajaj P, Scheidt R. Visuomotor learning enhanced by augmenting instantaneous trajectory error feedback during reaching. PLoS One. 2013;8(1):e46466.
  • Castro LNG, Monsen CB, Smith MA. The binding of learning to action in motor adaptation. PLoS Comput Biol. 2011;7(6):e1002052.
  • Abdollahi F, Case Lazarro ED, Listenberger M, Kenyon RV, Kovic M, Bogey RA, et al. Error augmentation enhancing arm recovery in individuals with chronic stroke: a randomized crossover design. Neurorehabil Neural Repair. 2014;28(2):120–128.
  • Givon-Mayo R, Simons E, Ohry A, Karpin H, Israely S, Carmeli E. A preliminary investigation of error enhancement of the velocity component in stroke patients’ reaching movements. Int J Ther Rehabil. 2014;21(4):160–168.
  • Huang FC, Patton JL. Augmented dynamics and motor exploration as training for stroke. IEEE Trans Biomed Eng. 2013;60(3):838–844.
  • Patton JL, Kovic M, Mussa-Ivaldi FA. Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006;43(5):643–656.
  • Della-Maggiore V, Landi SM, Villalta JI. Sensorimotor adaptation: multiple forms of plasticity in motor circuits. Neuroscientist. 2014;21(2):109–125.
  • Kim N, Cha Y. Effect of gait training with constrained-induced movement therapy (CIMT) on the balance of stroke patients. J Phys Ther Sci. 2015;27(3):611.
  • de Almeida Oliveira R, Cintia dos Santos Vieira P, Rodrigues Martinho Fernandes LF, Patrizzi LJ, Ferreira de Oliveira S, Pascucci Sande de Souza LA. Mental practice and mirror therapy associated with conventional physical therapy training on the hemiparetic upper limb in poststroke rehabilitation: a preliminary study. Top Stroke Rehabil. 2014;21(6):484–494.
  • Immink MA, Hillier S, Petkov J. Randomized controlled trial of yoga for chronic poststroke hemiparesis: motor function, mental health, and quality of life outcomes. Top Stroke Rehabil. 2014;21(3):256–271.
  • Duff S, Shumway-Cook A, Woollacott M. Clinical management of the patient with reach, grasp and manipulation disorders. In: Shumway-Cook A, Woollacott M, editors. Motor control: translating research into clinical practice. 4th edn: Lippincott Williams & Wilkins; 2012; p. 552–594.
  • Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(7):1861–1872.
  • Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21(6):628–633.
  • Della-Maggiore V, McIntosh AR. Time course of changes in brain activity and functional connectivity associated with long-term adaptation to a rotational transformation. J Neurophysiol. 2005;93(4):2254–2262.
  • Taylor JA, Ivry RB. The role of strategies in motor learning. Ann N Y Acad Sci. 2012;1251(1):1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.