588
Views
70
CrossRef citations to date
0
Altmetric
Review

Symbiotic control of mosquito borne disease

, , , , &
Pages 380-385 | Published online: 12 Nov 2013

References

  • Hertig M, Wolbach SB. Studies on Rickettsia-like microorganisms in insects. J Med Res. 1924;44:329–74.
  • Yen JH, Barr AR. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens. Nature. 1971;232:657–8.
  • Lacey LA. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc. 2007;23:133–63.
  • Miller WJ, Ehrman L, Schneider D. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog. 2010;6:e1001214.
  • Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109(22):8618–22.
  • Simon JC, Boutin S, Tsuchida T, Koga R, Le Gallic JF, Frantz A, et al.. Facultative symbiont infections affect aphid reproduction. PLoS ONE. 2011;6(7):e21831.
  • Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci. 2011;366(1569):1389–400.
  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, et al.. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA. 1997;94(7):3274–8.
  • Beard CB, Cordon-Rosales C, Durvasula RV. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol. 2002;47:123–41.
  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Taneja J, Kang AS, et al.. Expression of a functional antibody fragment in the gut of Rhodnius prolixus via transgenic bacterial symbiont Rhodococcus rhodnii. Med Vet Entomol. 1999;13(2):115–9.
  • Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al.. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011;7(9):1334–44.
  • Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs- Lorena M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007;37:595–603.
  • Bisi DC, Lampe DJ. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using PelB and HlyA secretion signals. Appl Environ Microbiol. 2011;77(13):4669–75.
  • Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012;109(31):12734–9.
  • Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al.. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA. 2007;104:9047–51.
  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al.. Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol. 2008;18:R1087–8.
  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, et al.. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol. 2010;60:644–54.
  • Ricci I, Damiani C, Capone A, Defreece C, Rossi P, Favia G. Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives. Curr Opin Microbiol. 2012;15(3):278–84.
  • Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, et al.. Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. Adv Exp Med Biol. 2008;627:49–59.
  • White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez MG, Ghani AC. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.
  • Kämpfer P, Terenius O, Lindh JM, Faye I. Janibacter anophelis sp. nov., isolated from the midgut of Anopheles arabiensis. Int J Syst Evol Microbiol. 2006;56(2):389–92.
  • Kämpfer P, Lindh JM, Terenius O, Haghdoost S, Falsen E, Busse HJ, et al.. Thorsellia anophelis gen. nov., sp. nov., a new member of the Gammaproteobacteria. Int J Syst Evol Microbiol. 2006;56(2):335–8.
  • Dinparast Djadid N, Jazayeri H, Raz A, Favia G, Ricci I, Zakeri S. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS ONE. 2011;6(12):e28484.
  • Chavshin AR, Oshaghi MA, Vatandoost H, Pourmand MR, Raeisi A, Enayati AA, et al.. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Acta Trop. 2012;121(2):129–34.
  • Ren X, Hoiczyk E, Rasgon JL. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog. 2008;4(8):e1000135.
  • Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P, et al.. The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. Environ Microbiol. 2011;13(4):911–21.
  • Ricci I, Mosca M, Valzano M, Damiani C, Scuppa P, Rossi P, et al.. Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. Antonie Van Leeuwenhoek. 2011;99(1):43–50.
  • Fang W, Vega-Rodríguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science. 2011;331(6020):1074–7.
  • Pumpuni CB, Beier MS, Nataro JP, Guers LD, Davis JR. Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by Gram-negative bacteria. Exp Parasitol. 1993;77(2):195–9.
  • Gonzalez-Ceron L, Santillan F, Rodriguez MH, Mendez D, Hernandez-Avila JE. Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. J Med Entomol. 2003;40(3):371–4.
  • Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5(5):e1000423.
  • Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet. 2008;42:683–707.
  • Ferri E, Bain O, Barbuto M, Martin C, Lo N, Uni S, et al.. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS ONE. 2011;6(6):e20843.
  • Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE. 2012;7(6):e38544.
  • McGraw EA, Merritt DJ, Droller JN, O’Neill SL. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci. 2001;268(1485):2565–70.
  • Turelli M. Cytoplasmic incompatibility in populations with overlapping generations. Evolution. 2010;64(1):232–41.
  • Kittayapong P, Baisley KJ, Baimai V, O’Neill SL. Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol. 2000;37(3):340–5.
  • Ricci I, Cancrini G, Gabrielli S, D’Amelio S, Favia G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol. 2002;39(4):562–7.
  • Tsai KH, Lien JC, Huang CG, Wu WJ, Chen WJ. Molecular (sub) grouping of endosymbiont Wolbachia infection among mosquitoes of Taiwan. J Med Entomol. 2004;41(4):677–83.
  • Wiwatanaratanabutr I. Geographic distribution of Wolbachia infection in mosquitoes from Thailand. J Invertebr Pathol. 2012; Epub 2012/05/29.
  • McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, et al.. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323(5910):141–4.
  • Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009;326(5949):134–6.
  • Min KT, Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA. 1997;94(20):10792–6.
  • Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, et al.. Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog. 2010;6(10):e1001143.
  • Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al.. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476(7361):450–3.
  • Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al.. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476(7361):454–7.
  • Nolan T, Papathanos P, Windbichler N, Magnusson K, Benton J, Catteruccia F, et al.. Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica. 2011;139(1):33–9.
  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA. 2004;101(42):15042–5.
  • Zabalou S, Apostolaki A, Livadaras I, Franz G, Robinson AS, Savakis C, et al.. Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain. Entomol Exp Appl. 2009;132:232–40.
  • Atyame CM, Pasteur N, Dumas E, Tortosa P, Tantely ML, Pocquet N, et al.. Cytoplasmic incompatibility as a means of controlling Culex pipiens quinquefasciatus mosquito in the islands of the south-western Indian Ocean. PLoS Negl Trop Dis. 2011;5(12):e1440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.