1,091
Views
101
CrossRef citations to date
0
Altmetric
Review

Genetic control of Aedes mosquitoes

, , , , , & show all
Pages 170-179 | Received 30 Oct 2012, Accepted 29 Apr 2013, Published online: 03 Dec 2013

References

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al.. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
  • WHO. Global strategy for dengue prevention and control 2012–2020. WHO; 2012.
  • Lambrechts L, Scott TW, Gubler DJ. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis. 2010;4:e646.
  • Gérardin P, Guernier V, Perrau J, Fianu A, Le Roux K, Grivard P, et al.. Estimating Chikungunya prevalence in La Reunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect Dis. 2008;8:99.
  • Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, Fontenille D. Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite. 2008;15:3–13.
  • Bonilauri P, Bellini R, Calzolari M, Angelini R, Venturi L, Fallacara F, et al.. Chikungunya virus in Aedes albopictus, Italy. Emerg Infect Dis. 2008;14:852–4.
  • Chambers EW, Hapairi L, Peel BA, Bossin H, Dobson SL. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions. PLoS Negl Trop Dis. 2011;5(8):e1271.
  • O'Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL. Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis. 2012;6:e1797.
  • Halstead SB. Dengue vaccine development: a 75% solution? Lancet. 2012;380(9853):1535–6.
  • Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al.. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012;380(9853):1559–67.
  • Egger JR, Ooi EE, Kelly DW, Woolhouse ME, Davies CR, Coleman PG. Reconstructing historical changes in the force of infection of dengue fever in Singapore: implications for surveillance and control. Bull World Health Organ. 2008;86:187–96.
  • Ooi EE, Goh KT, Gubler DJ. Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis. 2006;12:887–93.
  • National Environment Agency. Campaign against dengue. 2012. http://www.dengue.gov.sg/.
  • Labbé GM, Nimmo DD, Alphey L. piggyBac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PLoS Negl Trop Dis. 2010;4:e788.
  • Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci U S A. 1998;95:3748–51.
  • Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, et al.. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A. 1998;95:3743–7.
  • Rodrigues FG, Oliveira SB, Rocha BC, Moreira LA. Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element. Mem Inst Oswaldo Cruz. 2006;101:755–7.
  • Fraser MJ. Insect transgenesis: current applications and future prospects. Annu Rev Entomol. 2012;57:267–89.
  • Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310:326–8.
  • Xi Z, Khoo CC, Dobson SL. Interspecific transfer of Wolbachia into the mosquito disease vector Aedes albopictus. Proc Biol Sci. 2006;273:1317–22.
  • Braig H, Yan G. Genetically engineered organisms: assessing environmental and human health effects. CRC Press; 2001.
  • James A. In: Handler AM, James AA, (eds.) Insect transgenesis. CRC Press; 2000.
  • Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al.. Malaria control with genetically manipulated insect vectors. Science. 2002;298:119–21.
  • Alphey L. Natural and engineered mosquito immunity. J Biol. 2009;8:40.
  • Dyck VA, Hendrichs J, Robinson AS, editors. Sterile insect technique: principles and practice in area-wide integrated pest management. The Netherlands: Springer; 2005. p.801.
  • Knipling E. Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955;48:459–69.
  • Helinski ME, Parker AG, Knols BG. Radiation biology of mosquitoes. Malar J. 2009;8 Suppl 2: S6.
  • Andreasen MH, Curtis CF. Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005;19:238–44.
  • Helinski ME, Parker AG, Knols BG. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 2006;5:41.
  • Helinski ME, Knols BG. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J Med Entomol. 2008;45:698–705.
  • Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BG. Historical applications of induced sterilisation in field populations of mosquitoes. Malar J. 2009;8:S2.
  • Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S. In: Vreysen MB, Robinson AS, Hendrichs J, (eds.) Area-wide control of insect pests. The Netherlands: Springer; 2007. p. 505–15.
  • Boyer S, Gilles J, Merancienne D, Lemperiere G, Fontenille D. Sexual performance of male mosquito Aedes albopictus. Med Vet Entomol 2011;25:454–9.
  • Helinski ME, Hassan MM, El-Motasim WM, Malcolm CA, Knols BG, El-Sayed B. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation. Malar J. 2008;7:65.
  • Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, et al.. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 2010;10:295–311.
  • Brelsfoard CL, Sechan Y, Dobson SL. Interspecific hybridization yields strategy for South Pacific filariasis vector elimination. PLoS Negl Trop Dis. 2008;2:e129.
  • Bakri A, Mehta K, Lance DR. Sterilizing insects with ionizing radiation. In: Dyck VA, Hendrichs J, Robinson AS, (eds.) Sterile insect technique. Principles and practice in area-wide integrated pest management. The Netherlands: Springer; 2005. p. 233–68.
  • Mumford JD. Science, regulation, and precedent for genetically modified insects. PLoS Negl Trop Dis. 2012;6:e1504.
  • Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. PLoS Genet. 2008;4:e1000291.
  • Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci. 2003:270:921–8.
  • Deredec A, Burt A, Godfray HC. Population genetics of using homing endonuclease genes in vector and pest management. Genetics. 2008;179:2013–26.
  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS. Insect population control using a dominant, repressible, lethal genetic system. Science. 2000;287:2474–6.
  • Phuc HK, Andreasen MH, Burton RS, Vass C, Epton MJ, Pape G, et al.. Late-acting dominant lethal genetic systems and mosquito control. BMC Biol. 2007;5:11.
  • Atkinson MP, Su Z, Alphey N, Alphey LS, Coleman PG, Wein LM. Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci U S A. 2007;104:9540–5.
  • Yakob L, Alphey L, Bonsall M. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol. 2008;45:1258–65.
  • White SM, Rohani P, Sait SM. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J Appl Ecol. 2010;47:1329–39.
  • Alphey N, Alphey L, Bonsall MB. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One. 2011;6:e25384.
  • Barclay HJ. Mathematical models for the use of sterile insects. In: Dyck VA, Hendrichs J, Robinson AS, (eds.) Sterile insect technique. Principles and practice in area-wide integrated pest management. The Netherlands: Springer; 2005. p. 147–74.
  • Bax NJ, Thresher RE. Ecological, behavioral, and genetic factors influencing the recombinant control of invasive pests. Ecol Appl. 2009;19:873–88.
  • Koyama J, Kakinohana H, Miyatake T. Eradication of the Melon Fly Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu Rev Entomol. 2004;49:331–49.
  • Alphey N, Bonsall MB, Alphey L. Modeling resistance to genetic control of insects. J Theor Biol. 2011;270:42–55.
  • Hancock PA, Sinkins SP, Godfray HC. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis. 2011;5:e1024.
  • Hoffman AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al.. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–6.
  • Rendón P, McInnis D, Lance D, Stewart J. Medfly (Diptera:Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol. 2004;97:1547–53.
  • Ansari MA, Singh KR, Brooks GD, Malhotra PR, Vaidyanathan V. The development of procedures and techniques for mass rearing of Aedes aegypti. Indian J Med Res. 1977;65 (Suppl): 91–9.
  • Focks DA. An improved separator for separating the developmental stages, sexes and species of mosquitoes. Mosq News. 1980;19:144–47.
  • Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, et al.. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012;30:828–30.
  • Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, et al.. Field performance of engineered male mosquitoes. Nat Biotechnol. 2011;29:1034–7.
  • Kaiser PE, Seawright JA, Dame DA, Joslyn DJ. Development of a genetic sexing for Anopheles albimanus. J Econ Entomol. 1978;71:766–71.
  • Papathanos PA, Bossin HC, Benedict MQ, Catteruccia F, Malcolm CA, Alphey L, et al.. Sex separation strategies: past experience and new approaches. Malar J. 2009;8:S5.
  • Catteruccia F, Benton JP, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nat Biotechnol. 2005;23:1414–7.
  • Fu G, Condon KC, Epton MJ, Gong P, Jin L, Condon GC, et al.. Female-specific insect lethality engineered using alternative splicing. Nat Biotechnol. 2007;25:353–7.
  • Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, et al.. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci U S A. 2010;107:4550–4.
  • Ant T, Koukidou M, Rempoulakis P, Gong HF, Economopoulos A, Vontas J, et al.. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol. 2012;10:51.
  • Jin, Walker, Fu, Harvey-Samuel, Dafa'alla, Miles, Marubbi, Granville, Humphrey-Jones, O'Connell, Morrison, Alphey. Engineered female-specific lethality for control of pest Lepidoptera. ACS Synth Biol in press, (2013).
  • Marois E, Scali C, Soichot J, Kappler C, Levashina EA, Catteruccia F. High-throughput sorting of mosquito larvae for laboratory studies and for future vector control interventions. Malar J. 2012;11:302.
  • Alphey L. Re-engineering the sterile insect technique. Insect Biochem Mol Biol. 2002;32:1243–7.
  • Alphey L, Andreasen M. Dominant lethality and insect population control. Mol Biochem Parasitol. 2002;121:173–8.
  • Alphey L, Nimmo D, O'Connell S, Alphey N. In: Aksoy S, (ed.) Transgenesis and the management of vector-borne disease. Austin: Landes Bioscience; 2008, Vol.627. p. 93–103.
  • Black WC, Alphey L, James AA. Why RIDL is not SIT. Trends Parasitol. 2011;27:362–70.
  • Schliekelman P, Gould F. Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol. 2000;93:1566–79.
  • Alphey N, Bonsall M, Alphey L. Combining pest control and resistance management: synergy of engineered insects with Bt crops. J Econ Entomol. 2009;102:717–32.
  • Alphey N, Coleman PG, Donnelly CA, Alphey L. Managing insecticide resistance by mass release of engineered insects. J Econ Entomol. 2007;100:1642–9.
  • Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, et al.. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A. 2011;108:4772–5.
  • Labbé GM, Scaife S, Morgan SA, Curtis ZH, Alphey L. Female-specific flightless (fsRIDL) phenotype for control of Aedes albopictus. PLoS Negl Trop Dis. 2012;6:e1724.
  • Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, et al.. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci U S A. 2012;109:E1922–30.
  • Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002;417:452–5.
  • Corby-Harris V, Drexler A, Watkins de Jong L, Antonova Y, Pakpour N, Ziegler R, et al.. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog. 2010;6:e1001003.
  • Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, et al.. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc. Natl Acad Sci U S A. 2006;103:4198–203.
  • Mathur G, Sanchez-Vargas I, Alvarez D, Olson KE, Marinotti O, James AA. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2010;19:753–63.
  • Franz AW, Sanchez-Vargas I, Piper J, Smith MR, Khoo CC, James AA, et al.. Stability and loss of a virus resistance phenotype over time in transgenic mosquitoes harbouring an antiviral effector gene. Insect Mol Biol. 18:661–72.
  • Rasgon JL. Multi-locus assortment (MLA) for transgene dispersal and elimination in mosquito populations. PLoS One. 2009;4:e5833.
  • Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M. Mosquito transgenesis: what is the fitness cost? Trends Parasitol. 2006;22:197–202.
  • Burt A, Trivers R. Genes in conflict: the biology of selfish genetic elements. Belknap Press, Harvard University Press; 2006.
  • Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genet. 2006;7:427–35.
  • Chen C-H, Huang H, Ward CM, Su JT, Schaeffer LV, Guo M, et al.. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. Science. 2007;316:597–600.
  • Hay BA, Chen CH, Ward CM, Huang H, Su JT, Guo M. Engineering the genomes of wild insect populations: challenges, and opportunities provided by synthetic Medea selfish genetic elements. J Insect Physiol. 2010;56:1402–13.
  • Gould F, Huang Y, Legros M, Lloyd AL. A killer–rescue system for self-limiting gene drive of anti-pathogen constructs. Proc Biol Sci. 2008;275:2823–9.
  • Davis S, Bax N, Grewe P. Engineered underdominance allows efficient and economic introgression of traits into pest populations. J Theor Biol. 2001;212:83–98.
  • Magori K, Gould F. Genetically engineered underdominance for manipulation of pest populations: a deterministic model. Genetics. 2006;172:2613–20.
  • Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature. 1968;218:368–9.
  • Marshall JM, Pittman GW, Buchman AB, Hay BA. Semele: a killer-male, rescue-female system for suppression and replacement of insect disease vector populations. Genetics. 2011;187:535–51.
  • FAO/IAEA. Status and Risk Assessment of the use of transgenic arthropods in plant protection. 48 Vienna: FAO/IAEA; 2002.
  • NAPPO. Ottawa, Canada: NAPPO; 2007.
  • Beech C, Koukidou M, Morrison NI, Alphey L. Genetically modified insects: science, use, status and regulation. ICGEB Collect Biosafety Rev. 2012;6:66–124.
  • Alphey L, Beech C. In: Chris A Wozniak, Alan McHughen, (eds.) Regulation of agricultural biotechnology: The United States and Canada. The Netherlands: Springer; 2012, Ch. 13. p. 281–99.
  • Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining environmental risk assessment criteria for genetically modified insects to be placed on the EU market. European Food Safety Authority; 2010.
  • Benedict M, D'Abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, et al.. Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a scientific working group. Vector Borne and Zoonotic Dis. 2008;8:127–66.
  • Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science. 322:702.
  • Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009;326:134–6.
  • Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al.. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139:1268–78.
  • Hughes GL, Vega-Rodriguez J, Xue P, Rasgon JL. Wolbachia Strain wAlbB enhances infection by the rodent malaria parasite Plasmodium berghei in Anopheles gambiae mosquitoes. Appl Environ Microbiol. 2012;78:1491–95.
  • Hancock PA, Sinkins SP, Godfray HC. Population dynamic models of the spread of Wolbachia. Am Nat. 2011;177:323–33.
  • Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A. 2012;109:255–60.
  • Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al.. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2012;109:E23–31.
  • Brennan LJ, Keddie BA, Braig HR, Harris HL. The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS One. 2008;3:e2083.
  • Jansen VA, Turelli M, Godfray HC. Stochastic spread of Wolbachia. Proc Biol Sci. 2008;275:2769–76.
  • De Barro P, Murphy B, Jansen C, Murray J. The proposed release of the yellow fever mosquito, Aedes aegypti, containing a naturally occuring strain of Wolbachia pipientis, a question of regulatory responsibility. J Verbr Lebensm. 2011;6 (suppl 1):S33–40.
  • Subramaniam TS, Lee HL, Nazni WA, Murad S. Genetically modified mosquito: the Malaysian public engagement experience. Biotechnol J. 2012;7:1323–7.
  • Beech C, Nagaraju J, Vasan S, Rose R, Othman R, Pillai V, Saraswasthy T. Risk analysis of a hypothetical open field release of a self-limiting transgenic Aedes aegypti mosquito strain to combat dengue. Asia Pac J Mol Biol Biotechnol. 2009;17:97–108.
  • Mumford J, Quinlan MM, Beech CJ, Alphey L, Bayard V, Capurro ML, Kittayapong P, Knight JD, Marrelli MT, Ombongi K, Ramsey JM, Reuben R. MosqGuide: A project to develop best practice guidance for the deployment of innovative genetic vector control strategies for malaria and dengue. Asia Pac J Mol Biol Biotechnol. 2009;17:91–3.
  • Lu P, Bian G, Pan X, Xi Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis. 2012;6:e1754.
  • Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al.. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476:450–3.
  • O'Neill SL. Wolbachia infections of Aedes aegypti and their potential to control dengue transmission. Am J Trop Med Hyg. 2011;85:169.
  • McMeniman CJ, Hughes GL, O'Neill SL. A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. J Med Entomol. 2011;48:76–84.
  • Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, et al.. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol. 1993;30:922–7.
  • Siriyasatien P, Pengsakul T, Kittichai V, Phumee A, Kaewsaitiam S, Thavara U, et al.. Identification of blood meal of field caught Aedes aegypti (L.) by multiplex PCR. Southeast Asian J Trop Med Public Health. 2010;41:43–7.
  • Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M, Caputo B, et al.. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector Borne and Zoonotic Dis. 2010;10:291–4.
  • Barrera R, Bingham AM, Hassan HK, Amador M, Mackay AJ, Unnasch TR. Vertebrate hosts of Aedes aegypti and Aedes mediovittatus (Diptera: Culicidae) in rural Puerto Rico. J Med Entomol. 2012;49:917–21.
  • Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics. 2009;10:33.
  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, et al.. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2004;2:e69.
  • Lacroix R, McKemey AR, Raduan N, Kwee Wee L, Hong Ming W, Guat Ney T, et al.. Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLoS One. 2012;7:e42771.
  • Brelsfoard CL, Dobson SL. Short note: an update on the utility of Wolbachia for controlling insect vectors and disease transmission. Asia Pac J Mol Biol Biotechnol. 2011;19:85–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.