82
Views
17
CrossRef citations to date
0
Altmetric
Review

Towards Tailored Therapy of Glioblastoma Multiforme

Pages 187-199 | Published online: 18 Jul 2013

REFERENCES

  • Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. J Neurosurg 1998; 88 (1): 1–10.
  • Ohgalci H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004; 64 (19): 6892–6899.
  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114 (2): 97-109.
  • Dunbar E, Yachnis AT. Glioma diagnosis: immunohistochemistry and beyond. Adv Anat Pathol 2010; 17 (3): 187–201.
  • Barcellos-Hoff MH, Newcomb EW, Zagzag D, Narayana A. Thera-peutic targets in malignant glioblastoma microenvironment. Semin Radiat Oncol 2009; 19 (3): 163–170.
  • Fomchenko El, Holland EC. Stem cells and brain cancer. Exp Cell Res 2005; 306 (2): 323–329.
  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res 2004; 64 (19): 6892–6899.
  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007; 170 (5): 1445–1453.
  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoom MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352 (10): 987–996.
  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al. Effects of radiotherapy with concomitant and adjuvant temo-zolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10 (5): 459-466.
  • Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 2005; 64 (6): 479–489.
  • Burger PC, Vogel FS, Green SB, Strike TA. Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 1985; 56 (5): 1106–1111.
  • Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A, Collins VP. Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 2000; 60 (2): 417–424.
  • Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007; 25 (16): 2295–2305.
  • Endersby R, Baker SJ. PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene 2008; 27 (41): 5416–5430.
  • Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol Ther 2008; 7 (9): 1321–1325.
  • Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995; 81 (5): 727-736.
  • Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 2004; 23 (26): 4594–4602.
  • Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell 2000; 103 (2): 253–262.
  • Castedo M, Ferri KF, Kroemer G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 2002; 9 (2): 99–100.
  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/56 kinase activity in Pten+/- mice. Proc Nati Acad Sci U S A 2001; 98 (18): 10320-10325.
  • Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A et al. Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003; 63 (11): 2742-2746.
  • Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell 2008; 133 (3): 403–414.
  • Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells lose it. Biochem J 2004; 382(Pt 1):1–11.
  • Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K et al. Prognostic impact of molecular markers in a se-ries of 220 primary glioblastomas. Cancer 2006; 106 (10): 2218-2223.
  • Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003; 63 (20): 6962–6970.
  • Maher EA, Fumari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev 2001; 15 (11): 1311–1333.
  • Chakravarti A, Dicker A, Mehta M. The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol Biol Phys 2004; 58 (3): 927–931.
  • Sonabend AM, Dana K, Lesniak MS. Targeting epidermal growth fac-tor receptor variant III: a novel strategy for the therapy of malignant glioma. Expert Rev Anticancer Ther 2007; 7(12 Suppl):545–550.
  • LoEGFR-targeted Therapy in Malignant Glioma: Novel Aspectsand Mechanisms of Drug Resistance. Curr Mol Pharmacol 2009.
  • Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H et al. Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res 2006; 66 (2): 867–874.
  • Barker FG, Simmons ML, Chang SM, Prados MD, Larson DA, Sneed PK et al. EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2001; 51 (2): 410–418.
  • Puputti M, Tynninen O, Sihto H, Blom T, Maenpaa Isola J et al. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol Cancer Res 2006; 4 (12): 927-934.
  • Minniti G, Muni R, Lanzetta G, Marchetti P, Enrici RM. Chemother-apy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Res 2009; 29 (12): 5171–5184.
  • Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455 (7216): 1061-1068.
  • Pradeep CR, Sunila ES, Kuttan G. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and ma-lignancies. Integr Cancer Ther 2005; 4 (4): 315–321.
  • Kargiotis O, Rao JS, Kyritsis AP. Mechanisms of angiogenesis in gliomas. J Neurooncol 2006; 78 (3): 281–293.
  • Guha A, Feldkamp MM, Lau N, Boss G, Pawson A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 1997; 15 (23): 2755–2765.
  • Feldkamp MM, Lala P, Lau N, Roncari L, Guha A. Expression of ac-tivated epidermal growth factor receptors, Ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme speci-mens. Neurosurgery 1999; 45 (6): 1442–1453.
  • Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 2003; 12 (4): 889–901.
  • Robert A. Weinberg. Cytoplasmatic signaling circuitry programs many of the traits of cancer. The biology of cancer. Garland science, Taylor & francis group, LLC; 2007. p. 159-208.
  • Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001; 2 (2): 120–129.
  • Grzmil M, Hemmings BA. Deregulated signalling networks in human brain tumours. Biochim Biophys Acta 2010; 1804 (3): 476–483.
  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275 (5307): 1787–1790.
  • Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17 (1): 45–51.
  • Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008; 8 (5): 387–398.
  • Lauren Pecorini. Molecular biology of cancer: Mechanisms, Targets, and Therapeutics. Molecular biology of cancer: Mechanisms, Targets, and Therapeutics. 2010.
  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5 (9): 691–701.
  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36 (4): 417–422.
  • Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S et al. Frequent epigenetic inactivation of SFRP genes and constitutive acti-vation of Wnt signaling in gastric cancer. Oncogene 2007; 26 (32): 4699–4713.
  • Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006; 25 (29): 4116-4121.
  • Roman-Gomez J, Jimenez-Velasco A, Agirre X, Castillejo JA, Navarro G, Barrios M et al. Transcriptional silencing of the Dickkopfs-3 (Dkk-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia. Br J Cancer 2004; 91 (4): 707-713.
  • Gotze S, Wolter M, Reifenberger G, Muller O, Sievers S. Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant as-trocytic gliomas. Int J Cancer 2010; 126: 2584–2593.
  • Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G et al. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Car-cinogenesis 2007; 28 (6): 1264-1268.
  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblas-tomas with amplification of MYCN. Nat Med 2000; 6 (5): 529-535.
  • Zuzak TJ, Steinhoff DF, Sutton LN, Phillips PC, Eggert A, Grotzer MA. Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 2002; 38 (1): 83–91.
  • Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3 (6): 673–682.
  • Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271 (22): 12687–12690.
  • Bodmer JL, Holler N, Reynard S, Vinciguerra P, Schneider P, Juo P et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2000; 2 (4): 241-243.
  • Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cy-tokine Growth Factor Rev 2008; 19(3-4):325–331.
  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Kram-mer PH et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated pro-teins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14 (22): 5579-5588.
  • Cillessen SA, Meijer CJ, Ossenkoppele GJ, Castricum KC, Westra Al-I, Niesten P et al. Human soluble TRAIL/Apo2L induces apoptosis in a subpopulation of chemotherapy refractory nodal diffuse large B-cell lym-phomas, determined by a highly sensitive in vitro apoptosis assay. Br J Haematol 2006; 134 (3): 283-293.
  • Weller M, Malipiero U, Aguzzi A, Reed JC, Fontana A. Protoonco-gene bc1-2 gene transfer abrogates Fas/APO-1 antibody-mediated apopto-sis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest 1995; 95 (6): 2633–2643.
  • Rieger L, Weller M, Bornemann A, Schabet M, Dichgans J, Meyer-mann R. BCL-2 family protein expression in human malignant glioma: a clinical-pathological correlative study. J Neurol Sci 1998; 155 (1): 68–75.
  • Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ. Drug re-sistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and cas-pase-3-like proteases. Proc Natl Acad Sci US A 1998; 95 (10): 5724–5729.
  • Bayatti N, Engele J. Cyclic AMP modulates the response of central nervous system glia to fibroblast growth factor-2 by redirecting signalling pathways. J Neurochem 2001; 78 (5): 972–980.
  • Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2 (1): 38–47.
  • Perry C, Sklan EH, Soreq H. CREB regulates AChE-R-induced pro-liferation of human glioblastoma cells. Neoplasia 2004; 6 (3): 279–286.
  • Xiao X, Li BX, Mitton B, Ikeda A, Sakamoto KM. Targeting CREB for cancer therapy: friend or foe. Curr Cancer Drug Targets 2010; 10 (4): 384–391.
  • Newlands ES, Blackledge GR, Slack JA, Rustin GJ, Smith DB, Stuart NS et al. Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 1992; 65 (2): 287-291.
  • Baker SD, Wirth M, Statkevich P, Reidenberg P, Alton K, Sartorius SE et al. Absorption, metabolism, and excretion of 14C-temozolomide follow-ing oral administration to patients with advanced cancer. Clin Cancer Res 1999; 5 (2): 309-317.
  • Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 1997; 23 (1): 35–61.
  • Tentori L, Graziani G. Pharmacological strategies to increase the an-titumor activity of methylating agents. Curr Med Chem 2002; 9 (13): 1285–1301.
  • Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006; 7 (5): 335–346.
  • Bignami M, O'Driscoll M, Aquilina G, Karran P. Unmasking a killer: DNA 0(6)-methylguanine and the cytotoxicity of methylating agents. Mutat Res 2000; 462(2-3):71–82.
  • D'Atri S, Tentori L, Lacal PM, Graziani G, Pagani E, Benincasa E et al. Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol Pharmacol 1998; 54 (2): 334–341.
  • Kaina B, Ziouta A, Ochs K, Coquerelle T. Chromosomal instability, re-productive cell death and apoptosis induced by 06-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutat Res 1997; 381 (2): 227–241.
  • Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6 (8): 1079–1099.
  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de TN, Weller M et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10): 997–1003.
  • Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M et al. Cor-relation of 06-methylguanine methyltransferase (MGMT) promoter methy-lation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 2008; 26 (25): 4189-4199.
  • van Nifterik KA, van den Berg J, van der Meide WF, Ameziane N, Wedekind LE, Steenbergen RD et al. Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolo-mide. Br J Cancer 2010; 103 (1): 29–35.
  • Marchesi F, Turriziani M, Tortorelli G, Avvisati G, Torino F, De VL. Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol Res 2007; 56 (4): 275–287.
  • Villano JL, Seery TE, Bressler LR. Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 2009; 64 (4): 647–655.
  • Saribasak H, Rajagopal D, Maul RW, Gearhart PJ. Hijacked DNA re-pair proteins and unchained DNA polymerases. Philos Trans R Soc Lond B Biol Sci 2009; 364 (1517): 605–611.
  • Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006; 66 (8): 3987-3991.
  • Umar A, Koi M, Risinger JI, Glaab WE, Tindall KR, Kolodner RD et al. Correction of hypermutability, N-methyl-N'-nitro-N-nitrosoguanidine re-sistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res 1997; 57 (18): 3949-3955.
  • Lettieri T, Marra G, Aquilina G, Bignami M, Crompton NE, Palombo F et al. Effect of hMSH6 cDNA expression on the phenotype of mismatch repair-deficient colon cancer cell line HCT15. Carcinogenesis 1999; 20 (3): 373-382.
  • Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13 (7): 2038-2045.
  • Krokan HE, Nilsen H, Skorpen F, Otterlei M, Slupphaug G. Base ex-cision repair of DNA in mammalian cells. FEBS Lett 2000; 476 (1-2): 73–77.
  • Fishel ML, He Y, Smith ML, Kelley MR. Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res 2007; 13 (1): 260–267.
  • Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007; 13 (5): 1383–1388.
  • Tisdale MJ. Antitumour imidazotetrazines-XI: Effect of 8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(31-1)-one [CCRG 81045; M and B 39831 NSC 362856] on poly(ADP-ribose) metabolism. Br J Cancer 1985; 52 (5): 789–792.
  • Durkacz BW, Omidiji O, Gray DA, Shall S. (ADP-ribose)n participates in DNA excision repair. Nature 1980; 283 (5747): 593–596.
  • Bowman KJ, White A, Golding BT, Griffin RJ, Curtin NJ. Potentia-tion of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) poly-merase inhibitors NU1025 and NU1064. Br J Cancer 1998; 78 (10): 1269–1277.
  • Deangelis LM. Brain tumors. N Engl J Med 2001; 344 (2): 114–123.
  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de TN, Weller M etal. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10): 997–1003.
  • Tolcher AW, Gerson SL, Denis L, Geyer C, Hammond LA, Patnaik A et al. Marked inactivation of 06-alkylguanine-DNA alkyltransferase activ-ity with protracted temozolomide schedules. Br J Cancer 2003; 88 (7): 1004-1011.
  • Wick W, Steinbach JP, Kuker WM, Dichgans J, Bamberg M, Weller M. One week on/one week off: a novel active regimen of temozolomide for recurrent glioblastoma. Neurology 2004; 62 (11): 2113–2115.
  • Clarke JL, Iwamoto FM, Sul J, Panageas K, Lassman AB, Deangelis LM et al. Randomized phase II trial of chemoradiotherapy followed by ei-ther dose-dense or metronomic temozolomide for newly diagnosed glioblas-toma. J Clin Oncol 2009; 27 (23): 3861–3867.
  • Rabik CA, Njoku MC, Dolan ME. Inactivation of 06-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32 (4): 261–276.
  • Chinnasamy N, Rafferty JA, Hickson I, Ashby J, Tinwell H, Margison GP et al. 06-benzylguanine potentiates the in vivo toxicity and clastogenic-ity of temozolomide and BCNU in mouse bone marrow. Blood 1997; 89 (5): 1566-1573.
  • Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol 2009; 27 (8): 1262-1267.
  • Watson AJ, Sabharwal A, Thorncroft M, McGown G, Kerr R, Bo-janic S et al. Tumor 0(6)-methylguanine-DNA methyltransferase inactiva-tion by oral lomeguatrib. Clin Cancer Res 2010; 16 (2): 743-749.
  • Palanichamy K, Chakravarti A. Combining drugs and radiotherapy: from the bench to the bedside. Curr Opin Neurol 2009; 22: 625–632
  • Curtin NJ, Wang LZ, Yiakouvaki A, Kyle S, Arris CA, Canan-Koch S et al. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin Cancer Res 2004; 10 (3): 881-889.
  • Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 2004; 96 (1): 56-67.
  • Clarke J, Butowski N, Chang S. Recent advances in therapy for glioblastoma. Arch Neurol 2010; 67 (3): 279–283.
  • Chan MF, Schupak K, Burman C, Chui CS, Ling CC. Comparison of intensity-modulated radiotherapy with three-dimensional conformal radi-ation therapy planning for glioblastoma multiforme. Med Dosim 2003; 28 (4): 261–265.
  • Fitzek MM, Thornton AF, Rabinov JD, Lev MH, Pardo FS, Munzen-rider JE et al. Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg 1999; 91 (2): 251-260.
  • Nieder C, Andratschke N, Wiedenmann N, Busch R, Grosu AL, Molls M. Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? Strahlenther Onkol 2004; 180 (7): 401–407.
  • Knisely JP, Rockwell S. Importance of hypoxia in the biology and treatment of brain tumors. Neuroimaging Clin N Am 2002; 12 (4): 525–536.
  • Yang X, Darling JL, McMillan TJ, Peacock JH, Steel GG. Radiosen-sitivity, recovery and dose-rate effect in three human glioma cell lines. Ra-diother Oncol 1990; 19 (1): 49–56.
  • van Nifterik KA, van den Berg J, Stalpers LI, Lafleur MV, Leenstra S, Slotman BJ et al. Differential radiosensitizing potential of temozolomide in MGMT promoter methylated glioblastoma multiforme cell lines. Int J Ra-diat Oncol Biol Phys 2007; 69 (4): 1246–1253.
  • Chalmers AJ, Ruff EM, Martindale C, Lovegrove N, Short SC. Cy-totoxic effects of temozolomide and radiation are additive- and schedule-de-pendent. Int J Radiat Oncol Biol Phys 2009; 75 (5): 1511–1519.
  • Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology 2003; 193(1-2):3–34.
  • Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, Harper J et al. Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Res 2008; 68 (14): 5915-5923.
  • Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and pro-motes survival. Mol Cell 2008; 30 (2): 203–213.
  • Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ et al. Preclinical evaluation of a potent novel DNA-dependent protein ki-nase inhibitor NU7441. Cancer Res 2006; 66 (10): 5354-5362.
  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444 (7120): 756–760.
  • Kanamori M, Kawaguchi T, Nigro JM, Feuerstein BG, Berger MS, Miele L et al. Contribution of Notch signaling activation to human glioblas-toma multiforme. J Neurosurg 2007; 106 (3)417-427.
  • Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010; 28 (1): 17–28.
  • Dwarakanath BS, Singh D, Banerji AK, Sarin R, Venkataramana NK, Jalali R et al. Clinical studies for improving radiotherapy with 2-deoxy-D-glu-cose: present status and future prospects. J Cancer Res Ther 2009; 5 Suppl 1:S21-S26.
  • Dwarkanath BS, Zolzer F, Chandana S, Bauch T, Adhikari JS, Muller WU et al. Heterogeneity in 2-deoxy-D-glucose-induced modifications in en-ergetics and radiation responses of human tumor cell lines. Int J Radiat Oncol Biol Phys 2001; 50 (4): 1051-1061.
  • Jain V. Modifications of radiation responses by 2-deoxy-D-glucose in normal and cancer cells. Ind J Nucl Med 11;8–17. 1996.
  • Shewach DS, Lawrence TS. Antimetabolite radiosensitizers. J Clin Oncol 2007; 25 (26): 4043–4050.
  • Pauwels B, Korst AE, Lardon F, Vermorken JB. Combined modality therapy of gemcitabine and radiation. Oncologist 2005; 10 (1): 34–51.
  • Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol 2005; 1 (1): 7–17.
  • Metro G, Fabi A, Mirri MA, Vidiri A, Pace A, Carosi M et al. Phase II study of fixed dose rate gemcitabine as radiosensitizer for newly diagnosed glioblastoma multiforme. Cancer Chemother Pharmacol 2010; 65 (2): 391–397.
  • Sigmond J, Honeywell RJ, Postma TJ, Dirven CM, de Lange SM, van der Born K et al. Gemcitabine uptake in glioblastoma multiforme: po-tential as a radiosensitizer. Ann Oncol 2009; 20 (1): 182–187.
  • Maraveyas A, Sgouros J, Upadhyay S, Abdel-Hamid AH, Holmes M, Lind M. Gemcitabine twice weekly as a radiosensitiser for the treatment of brain metastases in patients with carcinoma: a phase I study. Br J Cancer 2005; 92 (5): 815–819.
  • Sathornsumetee S, Rich JN. Designer therapies for glioblastoma mul-tiforme. Ann NY Acad Sci 2008; 1142: 108–132.
  • Kesari S, Ramakrishna N, Sauvageot C, Stiles CD, Wen PY. Tar-geted molecular therapy of malignant gliomas. Curr Neurol Neurosci Rep 2005; 5 (3): 186–197.
  • Benjamin R, Capparella J, Brown A. Classification of glioblastoma multiforme in adults by molecular genetics. Cancer J 2003; 9 (2): 82–90.
  • Prados MD, Chang SM, Butowski N, DeBoer R, Parvataneni R, Car-liner H et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 2009; 27 (4): 579–584.
  • Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 2008; 26 (34): 5603-5609.
  • Hegi ME, Diserens AC, Bady P, Kamoshima Y, Kouwenhoven MC, Delorenzi M, Lambiv WL, Hamou MF, Matter MS, Koch A, Heppner FL, Yonekawa Y, Merlo A, Frei K, Mariani L, Hofer S.Pathway Analysis of Glioblastoma Tissue after Preoperative Treatment with the EGFR Tyrosine Kinase Inhibitor Gefitinib - A Phase II Trial. Mol Cancer Ther. 2011; 10: 1102–1112.
  • Eller JL, Longo SL, Kyle MM, Bassano D, Hicklin DJ, Canute GW. Anti-epidermal growth factor receptor monoclonal antibody cetuximab aug-ments radiation effects in glioblastoma multiforme in vitro and in vivo. Neu-rosurgery 2005; 56 (1): 155–162.
  • Combs SE, Heeger S, Haselmann R, Edler L, Debus J, Schulz-Ertner D. Treatment of primary glioblastoma multiforme with cetuximab, radio-therapy and temozolomide (GERT)-phase I/II trial: study protocol. BMC Cancer 2006; 6:133.
  • Razis E, Selviaridis P, Labropoulos S, Norris JL, Zhu MJ, Song DD et al. Phase II study of neoadjuvant imatinib in glioblastoma: evaluation of clinical and molecular effects of the treatment. Clin Cancer Res 2009; 15 (19): 6258–6266.
  • Reardon DA, Dresemann G, Taillibert S, Campone M, van den Bent M, Clement P et al. Multicentre phase II studies evaluating imatinib plus hy-droxyurea in patients with progressive glioblastoma. Br J Cancer 2009; 101(12)1995-2004.
  • Desjardins A, Quinn JA, Vredenburgh JJ, Sathornsumetee S, Fried-man AH, Herndon JE et al. Phase II study of imatinib mesylate and hydrox-yurea for recurrent grade III malignant gliomas. J Neurooncol 2007; 83 (1): 53–60.
  • Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2007; 7 (11): 1537–1560.
  • Kerbel RS. Tumor angiogenesis. N Engl J Med 2008; 358 (19): 2039–2049.
  • Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P et al. Differences in therapeutic indexes of combination metronomic chemother-apy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res 2002; 8 (1): 221-232.
  • Plate KH, Risau W. Angiogenesis in malignant gliomas. Glia 1995; 15 (3): 339–347.
  • Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tu-mour activity. Nat Rev Cancer 2008; 8 (8): 579–591.
  • Ferrara N. VEGF as a therapeutic target in cancer. Oncology 2005; 69 Suppl 3: 11–16.
  • Laird AD, Christensen JG, Li G, Carver J, Smith K, Xin X et al. 5U6668 inhibits Flk-1/KDR and PDGFRbeta in vivo, resulting in rapid apop-tosis of tumor vasculature and tumor regression in mice. FASEB J 2002; 16 (7): 681-690.
  • Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 2007; 6 (7): 2012–2021.
  • Chaudhry IH, O'Donovan DG, Brenchley PE, Reid H, Roberts IS. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 2001; 39 (4): 409–415.
  • Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G. Anti-angiogenic therapy: rationale, challenges and clinical studies. An-giogenesis 2002; 5 (4): 237–256.
  • Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and devel-opment of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3 (5): 391–400.
  • Vredenburgh JJ, Desjardins A, Herndon JE, Marcello J, Reardon DA, Quinn JA et al. Bevacizumab plus irinotecan in recurrent glioblastoma mul-tiforme. J Clin Oncol 2007; 25 (30): 4722–4729.
  • Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008; 70 (10): 779–787.
  • Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud metal. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27 (5): 740–745.
  • Poulsen HS, Grunnet K, Sorensen M, Olsen P, Hasselbalch B, Nelausen K et al. Bevacizumab plus irinotecan in the treatment patients with progressive recurrent malignant brain tumours. Acta Oncol 2009; 48 (1): 52–58.
  • Kang TY, Jin T, Elinzano H, Peereboom D. Irinotecan and beva-cizumab in progressive primary brain tumors, an evaluation of efficacy and safety. J Neurooncol 2008; 89 (1): 113–118.
  • Batchelor TT, Sorensen AG, di TE, Zhang WT, Duda DG, Cohen KS et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, nor-malizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11 (1): 83-95.
  • Dietrich J, Wang D, Batchelor TT. Cediranib: profile of a novel anti-angiogenic agent in patients with glioblastoma. Expert Opin Investig Drugs 2009; 18 (10): 1549–1557.
  • Abraham RT. PI 3-kinase related kinases: ‘big’ players in stress-in-duced signaling pathways. DNA Repair (Amst) 2004; 3(8-9):883–887.
  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298 (5600): 1912–1934.
  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblas-toma formation in mice. Nat Genet 2000; 25 (1): 55–57.
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Can-cer Cell 2007; 12 (1): 9–22.
  • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tu-mour cell growth. Nature 2006; 441 (7092): 424–430.
  • Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev 2007; 26(3-4):611–621.
  • Abraham RT, Gibbons JJ. The mammalian target of rapamycin sig-naling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 2007; 13 (11): 3109–3114.
  • Dancey JE. Therapeutic targets: MTOR and related pathways. Can-cer Biol Ther 2006; 5 (9): 1065–1073.
  • Easton JB, Houghton PJ. mTOR and cancer therapy. Oncogene 2006; 25 (48): 6436–6446.
  • Garcia-Echeverria C, Sellers WR. Drug discovery approaches target-ing the PI3K/Akt pathway in cancer. Oncogene 2008; 27 (41): 5511–5526.
  • Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal 2009; 2 (67):e24.
  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7 ( 2):e38.
  • Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM et al. Ku-0063794 is a specific inhibitor of the mammalian tar-get of rapamycin (mTOR). Biochem J 2009; 421 (1): 29-42.
  • Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Yet al. An ATP-competitive mammalian target of rapamycin inhibitor reveals ra-pamycin-resistant functions of mTORC1. J Biol Chem 2009; 284 (12): 8023-8032.
  • Yu K, Toral-Barza L, SM C, Zhang WG, Lucas J, Shor B et al. Bio-chemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69 (15): 6232–6240.
  • Sarkaria JN, Galanis E, Wu W, PeIler PJ, Giannini C, Brown PD et al. North Central Cancer Treatment Group Phase I Trial N057K of Everolimus (RAD001) and Temozolomide in Combination with Radiation Therapy in Patients with Newly Diagnosed Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys 2010; Sep 22. [Epub ahead of print]
  • Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C et al. Phase II study of CCI-779 in patients with recurrent glioblastoma mul-tiforme. Invest New Drugs 2005; 23 (4): 357-361.
  • Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Friedman AH, Herndon JE et al. Phase 2 trial of erlotinib plus sirolimus in adultswith recurrent glioblastoma. J Neurooncol 2010; 96 (2): 219-230.
  • Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y, Kawata M et al. Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 1999; 59 (17): 4413–4418.
  • Fine HA, Kim L, Royce C. Results from phase II trial of enzastaurin (LY317616) in patients with recurrent high-grade gliomas. J.Clin.Oncol. 2005; abstract
  • Wick W, Puduvalli VK, Chamberlain MC, van den Bent MJ, Carpen-tier AF, Cher LM et al. Phase III Study of Enzastaurin Compared With Lo-mustine in the Treatment of Recurrent Intracranial Glioblastoma. J Clin Oncol 2010; 28 (7): 1168–1174.
  • Carducci MA, Musib L, Kies MS, Pili R, Truong M, Brahmer JR et al. Phase I dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C beta inhibitor, in patients with advanced cancer. J Clin Oncol 2006; 24 (25): 4092–4099.
  • Galanis E, Buckner JC. Enzastaurin in the treatment of recurrent glioblastoma: a promise that did not materialize. J Clin Oncol 2010; 28 (7): 1097–1098 .
  • Macdonald DR, Cascino TL, Schold SC, Jr., Cairncross JG. Re-sponse criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8 (7): 1277–1280.
  • Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK. Re-sponse criteria for glioma. Nat Clin Pract Oncol 2008; 5 (11): 634–644.
  • Quant EC, Wen PY. Response assessment in neuro-oncology. Curr Oncol Rep 2011; 13 (1): 50–56.
  • Silber J, Lim DA, Petritsch C, Persson Al, Maunakea AK, Yu Metal. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6:14.
  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko El, Huse JT, Brennan CW et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 2009; 4 (3): 226-235.
  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27 (31): 4373-4379.
  • Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 2010; 90 (2): 144-155.
  • Decleves X, Amiel A, Delattre JY, Scherrmann JM. Role of ABC transporters in the chemoresistance of human gliomas. Curr Cancer Drug Targets 2006; 6 (5): 433–445.
  • Nieder C, Mehta MP, Jalali R. Combined radio- and chemotherapy of brain tumours in adult patients. Clin Oncol (R Coll Radiol ) 2009; 21 (7): 515–524.
  • Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M. En-hanced chemotherapy delivery by intraarterial infusion and blood-brain bar-rier disruption in malignant brain tumors: the Sherbrooke experience. Cancer 2005; 103 (12): 2606–2615.
  • Jenkinson MD, Smith TS, Haylock B, Husband D, Shenoy A, Vinja-muri S et al. Phase II trial of intratumoral BCNU injection and radiotherapy on untreated adult malignant glioma. J Neurooncol 2010; 99: 103–113.
  • Debinski W, Tatter SB. Convection-enhanced delivery for the treat-ment of brain tumors. Expert Rev Neurother 2009; 9 (10): 1519–1527.
  • Wen PY, Kesari S, Drappatz J. Malignant gliomas: strategies to in-crease the effectiveness of targeted molecular treatment. Expert Rev Anti-cancer Ther 2006; 6 (5): 733–754.
  • Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 2007; 6 (3): 945–956.
  • Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2003; 2 (4): 371-382.
  • Miknyoczki S, Chang H, Grobelny J, Pritchard S, Worrell C, McGann Net et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol Cancer Ther 2007; 6 (8): 2290-2302.
  • Clarke MJ, Mulligan EA, Grogan PT, Mladek AC, Carlson BL, Schroeder MA et al. Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines. Mol Cancer Ther 2009; 8 (2): 407-414.
  • Drappatz J, Norden AD, Wong ET, Doherty LM, Lafrankie DC, Ciampa A et al. Phase I Study of Vandetanib with Radiotherapy and Temo-zolomide for Newly Diagnosed Glioblastoma. Int J Radiat Oncol Biol Phys 2010; 78: 85–90.
  • Zustovich F, Lombardi G, Della PA, Rotilio A, Scienza R, Pastorelli D. A phase II study of cisplatin and temozolomide in heavily pre-treated pa-tients with temozolomide-refractory high-grade malignant glioma. Anticancer Res 2009; 29 (10): 4275–4279.
  • Raizer JJ, Abrey LE, Lassman AB, Chang SM, Lamborn KR, Kuhn JG et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 2010; 12 (1): 95–103.
  • Peereboom DM, Shepard DR, Ahluwalia MS, Brewer CJ, Agarwal N, Stevens GH et al. Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol 2010; 98: 93–99.
  • van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF et al. Randomized phase II trial of erlotinib versus temo-zolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 2009; 27 (8): 1268-1274.
  • de Groot JF, Gilbert MR, Aldape K, Hess KR, Hanna TA, Ictech S et al. Phase II study of carboplatin and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma. J Neurooncol 2008; 90 (1): 89-97.
  • Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D et al. Gefitinib in patients with progressive high-grade gliomas: a multicen-tre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 2007; 96 (7): 1047–1051.
  • Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL et al. Phase 11 trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22 (1): 133-142.
  • Raymond E, Brandes AA, Dittrich C, Fumoleau P, Coudert B, Clement PM et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 2008; 26 (28): 4659–4665.
  • Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin Cancer Res 2006; 12 (16): 4899-4907.
  • Narayana A, Golfinos JG, Fischer I, Raza S, Kelly P, Parker E et al. Feasibility of using bevacizumab with radiation therapy and temozolomide in newly diagnosed high-grade glioma. Int J Radiat Oncol Biol Phys 2008; 72 (2): 383–389.
  • Reardon DA, Desjardins A, Vredenburgh JJ, Gururangan S, Sampson JH, Sathornsumetee S et al. Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 2009; 101 (12): 1986–1994.
  • Brandes AA, Stupp R, Hau P, Lacombe D, Gorlia T, Tosoni A et al. EORTC study 26041-22041: phase 1/II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with PTK787/ZK222584 (FIR/ZK) in newly diagnosed glioblastoma. Eur J Cancer 2010; 46 (2): 348-354.
  • Iwamoto FM, Lamborn KR, Robins HI, Mehta MP, Chang SM, Butowski NA et al. Phase II trial of pazopanib (GW786034), an oral multi-tar-geted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro Oncol 2010; 12: 855–861.
  • Noda SE, El-Jawahri A, Patel D, Lautenschlaeger T, Siedow M, Chakravarti A. Molecular advances of brain tumors in radiation oncology. Semin Radiat Oncol 2009; 19 (3): 171–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.