409
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Lactose on Colon Microbial Community Structure and Function in a Four-Stage Semi-Continuous Culture System

, , &
Pages 2056-2063 | Received 16 Jan 2006, Accepted 04 May 2006, Published online: 22 May 2014

  • 1) Hopkins, M. J., Sharp, R., and Macfarlane, G. T., Variation in human intestinal microbiota with age. Dig. Liver Dis., 34 (Suppl 2), S12–S18 (2002).
  • 2) Goossens, D., Jonkers, D., van den Stobberingh, E. B. A., Russel, M., and Stockbrugger, R., Probiotics in gastroenterology: indications and future perspectives. Scand. J. Gastroenterol. Suppl., 239, 15–23 (2003).
  • 3) Kolida, S., Tuohy, K., and Gibson, G. R., Prebiotic effects of inulin and oligofructose. Br. J. Nutr., 87 (Suppl 2), S193–S197 (2002).
  • 4) Macfarlane, G. T., and Cummings, J. H., Probiotics, infection and immunity. Curr. Opin. Infect. Dis., 15, 501–506 (2002).
  • 5) Probert, H. M., Apajalahti, J. H., Rautonen, N., Stowell, J., and Gibson, G. R., Polydextrose, lactitol, and fructo-oligosaccharide fermentation by colonic bacteria in a three-stage continuous culture system. Appl. Environ. Microbiol., 70, 4505–4511 (2004).
  • 6) Macfarlane, G. T., and Cummings, J. H., “The Colonic Flora, Fermentation, and Large Bowel Digestive Function,” Raven Press, NY, pp. 51–92 (1991).
  • 7) Valsta, L. M., Food-based dietary guidelines for Finland-a staged approach. Br. J. Nutr., 81 (Suppl 2), S49–S55 (1999).
  • 8) Scheppach, W., Luehrs, H., and Menzel, T., Beneficial health effects of low-digestible carbohydrate consumption. Br. J. Nutr., 85 (Suppl 1), S23–S30 (2001).
  • 9) Henslee, J. G., and Jones, M. E., Ornithine synthesis from glutamate in rat small intestinal mucosa. Arch. Biochem. Biophys., 219, 186–197 (1982).
  • 10) Gudmand-Hoyer, E., The clinical significance of disaccharide maldigestion. Am. J. Clin. Nutr., 59, 735S–741S (1994).
  • 11) Szilagyi, A., Lactose: a potential prebiotic. Aliment. Pharmacol. Ther., 16, 1591–1602 (2002).
  • 12) Szilagyi, A., Redefining lactose as a conditional prebiotic. Can. J. Gastroenterol., 18, 163–167 (2004).
  • 13) Molly, K., Vande, W. M., and Verstraete, W., Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol., 39, 254–258 (1993).
  • 14) Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., Alric, M., Fonty, G., and Huis in‘t Veld, J. H. J., A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol., 53, 108–114 (1999).
  • 15) Macfarlane, G. T., Macfarlane, S., and Gibson, G. R., Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol., 35, 180–187 (1998).
  • 16) Mäkivuokko, H., Nurmi, J., Nurminen, P., Stowell, J., and Rautonen, N., In vitro effects on polydextrose by colonic bacteria and Caco-2 cell cyclooxygenase gene expression. Nutr. Cancer, 52, 94–104 (2005).
  • 17) Apajalahti, J. H., Sarkilahti, L. K., Maki, B. R., Heikkinen, J. P., Nurminen, P. H., and Holben, W. E., Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. Appl. Environ. Microbiol., 64, 4084–4088 (1998).
  • 18) Holben, W. E., Sarkilahti, L. K., Williams, P., Saarinen, M., and Apajalahti, J. H. A., Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb. Ecol., 44, 175–185 (2002).
  • 19) Saarinen, M. T., Determination of biogenic amines as dansyl derivatives in intestinal digesta and feces by reversed phase HPLC. Chromatographia, 55, 297–300 (2002).
  • 20) Miller, G. L., Use of dinitrosalycylic acid reagent for determination of reducing sugar. Anal. Chem., 31, 426–428 (1959).
  • 21) Apajalahti, J. H. A., Kettunen, H., Kettunen, A., Holben, W. E., Nurminen, P. H., Rautonen, N., and Mutanen, M., Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse caecum. Appl. Environ. Microbiol., 68, 4986–4995 (2002).
  • 22) Apajalahti, J. H. A., Kettunen, A., Bedford, M. R., and Holben, W. E., Percent G+C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl. Environ. Microbiol., 67, 5656–5667 (2001).
  • 23) Cummings, J. H., and Macfarlane, G. T., The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol., 70, 443–459 (1991).
  • 24) Sgorbati, B., Biavati, B., and Palenzona, D., The genus Bifidobacterium. In “The Lactic Acid Bacteria,” eds. Salminen, S., and von Wright, A., Chapman and Hall, Glasgow, pp. 279–306 (1995).
  • 25) McBain, A. J., and Macfarlane, G. T., Investigations of bifidobacterial ecology and oligosaccharide metabolism in a three-stage compound continuous culture system. Scand. J. Gastroenterol. Suppl., 222, 32–40 (1997).
  • 26) Scrimshaw, N. S., and Murray, E. B., The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. Am. J. Clin. Nutr., 48, 1079–1159 (1988).
  • 27) Sahi, T., The inheritance of selective adult-type lactose malabsorption. Scand. J. Gastroenterol. Suppl., 30, 1–73 (1974).
  • 28) Sahi, T., Genetics and epidemiology of adult-type hypolactasia. Scand. J. Gastroenterol. Suppl., 202, 7–20 (1994).
  • 29) Vesa, T. H., Marteau, P., and Korpela, R., Lactose intolerance. J. Am. Coll. Nutr., 19, 165S–175S (2000).
  • 30) Jiang, T., and Savaiano, D. A., In vitro lactose fermentation by human colonic bacteria is modified by Lactobacillus acidophilus supplementation. J. Nutr., 127, 1489–1495 (1997).
  • 31) Perman, J. A., Modler, S., and Olson, A. C., Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora: studies in vivo and in vitro. J. Clin. Invest., 67, 643–650 (1981).
  • 32) Holtug, K., Clausen, M. R., Hove, H., Christiansen, J., and Mortensen, P. B., The colon in carbohydrate malabsorption: short-chain fatty acids, pH, and osmotic diarrhoea. Scand. J. Gastroenterol., 27, 545–552 (1992).
  • 33) Männistö, S., Ovaskainen, M., and Valsta, L., The National FINDIET 2002 study, Publications of Finnish National Health Institute B3/2003, Helsinki (2003).
  • 34) Bergman, E. N., Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev., 70, 567–590 (1990).
  • 35) Nurmi, J. T., Puolakkainen, P. A., and Rautonen, N. E., Bifidobacterium lactis sp.420 up-regulates cyclooxygenase (Cox-1) and down-regulates Cox-2 geneexpression in a Caco-2 cell culture model. Nutr. Cancer, 51, 83–92 (2005).
  • 36) Archer, S. Y., Meng, S., Wu, J., Johnson, J., Tang, R., and Hodin, R., Butyrate inhibits colon carcinoma cell growth through two distinct pathways. Surgery, 124, 248–253 (1998).
  • 37) German, J. B., Butyric acid: a role in cancer prevention. BNF Nutrition Bulletin, 24, 203–209 (1999).
  • 38) Gibson, P. R., Rosella, O., Wilson, A. J., Mariadason, J. M., Rickard, K., Byron, K., and Barkla, D. H., Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis, 20, 539–544 (1999).
  • 39) Gomez, S., Cosson, C., and Deschamps, A. M., Evidence for a bacteriocin-like substance produced by a new strain of Streptococcus sp., inhibitory to gram-positive food-borne pathogens. Res. Microbiol., 148, 757–766 (1997).
  • 40) Wang, J., and Friedman, E. A., Short-chain fatty acids induce cell cycle inhibitors in colonocytes. Gastroenterology, 114, 940–946 (1998).
  • 41) Priebe, M. G., Vonk, R. J., Sun, X., He, T., Harmsen, H. J., and Welling, G. W., The physiology of colonic metabolism: possibilities for interventions with pre- and probiotics. Eur. J. Nutr., 41 (Suppl 1), I2–10 (2002).
  • 42) Kleen, J. L., Hooijer, G. A., Rehage, J., and Noordhuizen, J. P., Subacute ruminal acidosis (SARA): a review. J. Vet. Med. A Physiol. Pathol. Clin., 50, 406–414 (2003).
  • 43) Savage, D. C., Gastrointestinal microflora in mammalian nutrition. Annu. Rev. Nutr., 6, 155–178 (1986).
  • 44) Macfarlane, G. T., Gibson, G. R., and Cummings, J. H., Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol., 72, 57–64 (1992).
  • 45) Macfarlane, S., and Macfarlane, G. T., Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 62, 67–72 (2003).
  • 46) Apajalahti, J. H., Kettunen, A., Nurminen, P. H., Jatila, H., and Holben, W. E., Selective plating underestimates abundance and shows differential recovery of bifidobacterial species from human feces. Appl. Environ. Microbiol., 69, 5731–5735 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.