381
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Protective Effect of Grape Seed Polyphenols against High Glucose-Induced Oxidative Stress

, , , &
Pages 2104-2111 | Received 31 Jan 2006, Accepted 04 May 2006, Published online: 22 May 2014

  • 1) Allen, D. A., Harwood, S., Varagunam, M., Raftery, M. J., and Yaqoob, M. M., High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J., 17, 908–910 (2003).
  • 2) Fiordaliso, F., Bianchi, R., Staszewsky, L., Cuccovillo, I., Doni, M., Laragione, T., Salio, M., Savino, C., Melucci, S., Santangelo, F., Scanziani, E., Masson, S., Ghezzi, P., and Latini, R., Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats. J. Mol. Cell. Cardiol., 37, 959–968 (2004).
  • 3) Liu, B., Bhat, M., and Nagaraj, R. H., AlphaB-crystallin inhibits glucose-induced apoptosis in vascular endothelial cells. Biochem. Biophys. Res. Commun., 321, 254–258 (2004).
  • 4) Surh, Y. J., Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res., 428, 305–327 (1999).
  • 5) Kim, Y. A., Lee, W. H., Choi, T. H., Rhee, S. H., Park, K. Y., and Choi, Y. H., Involvement of p21WAF1/CIP1, pRB, bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int. J. Oncol., 23, 1143–1149 (2003).
  • 6) Cao, Y., Fu, Z. D., Wang, F., Liu, H. Y., and Han, R., Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. J. Asian Nat. Prod. Res., 7, 205–213 (2005).
  • 7) Kim, Y. A., Rhee, S. H., Park, K. Y., and Choi, Y. H., Antiproliferative effect of resveratrol in human prostate carcinoma cells. J. Med. Food, 6, 273–280 (2003).
  • 8) Kim, Y. A., Choi, B. T., Lee, Y. T., Park, D. I., Rhee, S. H., Park, K. Y., and Choi, Y. H., Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells. Oncol. Rep., 11, 441–446 (2004).
  • 9) Natella, F., Belelli, F., Gentili, V., Ursini, F., and Scaccini, C., Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J. Agric. Food Chem., 50, 7720–7725 (2002).
  • 10) Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S., and Pruess, H. G., Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology, 148, 187–197 (2000).
  • 11) Park, J. B., Inhibition of glucose and dehydroascorbic acid uptakes by resveratrol in human transformed myelocytic cells. J. Nat. Prod., 64, 381–384 (2001).
  • 12) Kashiwada, Y., Iizuka, H., Yoshioka, K., Chen, R. F., Nonaka, G., and Nishioka, I., Tannins and related compounds. XCIII. Occurrence of enantiomeric proanthocyanidins in the Leguminosae plants, Cassia fistula L. and C. javanica L. Chem. Pharm. Bull., 38, 888–893 (1990).
  • 13) Nonaka, G., Hsu, F. L., and Nishioka, I., Structures of dimeric, trimeric, and tetrameric procyanidins from Areca catechu L. J. Chem. Soc. Chem. Commun., 781–783 (1981).
  • 14) Nonaka, G., Kawahara, O., and Nishioka, I., Tannins and related compounds. XV. A new class of dimeric flavan-3-ols gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf (1). Chem. Pharm. Bull., 31, 1906–1914 (1982).
  • 15) Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., and Mitchell, J. B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res., 47, 936–942 (1987).
  • 16) Wang, H., and Joseph, J. A., Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med., 27, 612–616 (1999).
  • 17) Cho, K. J., Han, S. H., Kim, B. Y., Hwang, S. G., Park, K. K., Yang, K. H., and Chung, A. S., Chlorophyllin suppression of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. Toxicol. Appl. Pharmacol., 166, 120–127 (2000).
  • 18) Asahina, T., Kashiwagi, A., Nishio, Y., Ikebuchi, M., Harada, N., Tanaka, Y., Takagi, Y., Saeki, Y., Kikkawa, R., and Shigeta, Y., Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high-glucose medium. Diabetes, 44, 520–526 (1995).
  • 19) Wu, Q. D., Wang, J. H., Fennessy, F., Redmond, H. P., and Bouchier-Hayes, D., Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am. J. Physiol., 277, C1229–C1238 (1999).
  • 20) Romeo, G., Liu, W. H., Asnaghi, V., Kern, T. S., and Lorenzi, M., Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes, 51, 2241–2248 (2002).
  • 21) Ceriello, A., Quagliaro, L., Piconi, L., Assaloni, R., Da Ros, R., Maier, A., Esposito, K., and Giugliano, D., Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes, 53, 701–710 (2004).
  • 22) Vincent, A. M., Olzmann, J. A., Brownlee, M., Sivitz, W. I., and Russell, J. W., Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes, 53, 726–734 (2004).
  • 23) Yokozawa, T., and Nakagawa, T., Inhibitory effects of Luobuma tea and its components against glucose-mediated protein damage. Food Chem. Toxicol., 42, 975–981 (2004).
  • 24) Jimenez-Ramsey, L. M., Rogler, J. C., Housley, T. L., Butler, L. G., and Elkin, R. G., Absorption and distribution of C-labeled condensed tannins and related sorghum phenolic in chickens. J. Agric. Food Chem., 42, 963–967 (1994).
  • 25) Bravo, L., Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 56, 317–333 (1998).
  • 26) Baba, S., Osakabe, N., Natsume, M., and Terao, J., Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radic. Biol. Med., 33, 142–148 (2002).
  • 27) Donovan, J. L., Manach, C., Rios, L., Morand, C., Scalbert, A., and Rémésy, C., Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B3. Br. J. Nutr., 87, 299–306 (2002).
  • 28) Sano, A., Yamakoshi, J., Tokutake, S., Tobe, K., Kubota, Y., and Kikuchi, M., Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci. Biotechnol. Biochem., 67, 1140–1143 (2003).
  • 29) Roychowdhury, S., Wolf, G., Keilhoff, G., Bagchi, D., and Horn, T., Protection of primary glial cells by grape seed proanthocyanidin extract against nitrosative/oxidative stress. Nitric Oxide, 5, 137–149 (2001).
  • 30) Halliwell, B., and Gutteridge, J. M. C., Consequences of oxidative stress: cell death. In “Free Radicals in Biology and Medicine,” Oxford University Press, New York, pp. 337–341 (2001).
  • 31) Zanetti, M., Zwacka, R., Engelhardt, J., Katusic, Z., and O’Brien, T., Superoxide anions and endothelial cell proliferation in normoglycemia and hyperglycemia. Arterioscler. Thromb. Vasc. Biol., 21, 195–200 (2001).
  • 32) Chen, K., and Keaney, J., Reactive oxygen species-mediated signal transduction in the endothelium. Endothelium, 11, 109–121 (2004).
  • 33) Usui, T., Shizuuchi, S., Watanabe, H., and Hayase, F., Cytotoxicity and oxidative stress induced by the glyceraldehyde-related Maillard reaction products for HL-60 cells. Biosci. Biotechnol. Biochem., 68, 333–340 (2004).
  • 34) Li, M. H., Jang, J. H., Sun, B., and Surh, Y. J., Protective effects of oligomers of grape seed polyphenols against {beta}-amyloid-induced oxidative cell death. Ann. NY Acad. Sci., 1030, 317–329 (2004).
  • 35) Du, X., Stocklauser-Farber, K., and Rosen, P., Generation of reactive oxygen intermediates, activation of NF-kappaB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radic. Biol. Med., 27, 752–763 (1999).
  • 36) Ishii, N., Patel, K. P., Lane, P. H., Taylor, T., Bian, K., Murad, F., Pollock, J. S., and Carmines, P. K., Nitric oxide synthesis and oxidative stress in the renal cortex of rats with diabetes mellitus. J. Am. Soc. Nephrol., 12, 1630–1639 (2001).
  • 37) Walker, L. M., Walker, P. D., Imam, S. Z., Ali, S. F., and Mayeux, P. R., Evidence for peroxynitrite formation in renal ischemia-reperfusion injury: studies with the inducible nitric oxide synthase inhibitor L -N(6)-(1-Iminoethyl)lysine. J. Pharmacol. Exp. Ther., 295, 417–422 (2000).
  • 38) Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K., and Lee, S. S., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res., 480–481, 243–268 (2001).
  • 39) Simonian, N. A., and Coyle, J. T., Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol., 36, 83–106 (1996).
  • 40) Cheng, H. F., Wang, C. J., Moeckel, G. W., Zhang, M. Z., McKanna, J. A., and Harris, R. C., Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int., 62, 929–939 (2002).
  • 41) Minghetti, L., Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol., 63, 901–910 (2004).
  • 42) Zha, S., Yegnasubramanian, V., Nelson, W. G., Isaacs, W. B., and De Marzo, A. M., Cyclooxygenases in cancer: progress and perspective. Cancer Lett., 215, 1–20 (2004).
  • 43) Koliopanos, A., Friess, H., Kleeff, J., Roggo, A., Zimmermann, A., and Buchler, M. W., Cyclooxygenase 2 expression in chronic pancreatitis: correlation with stage of the disease and diabetes mellitus. Digestion, 64, 240–247 (2001).
  • 44) Melk, A., Schmidt, B. M., Takeuchi, O., Sawitzki, B., Rayner, D. C., and Halloran, P. F., Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int., 65, 510–520 (2004).
  • 45) Zang, X., and Morrison, D. C., Lipopolysaccharide-induced selective priming effects on tumor necrosis factor alpha and nitric oxide production in mouse peritoneal macrophages. J. Exp. Med., 177, 511–516 (1993).
  • 46) Horton, J. W., Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology, 189, 75–88 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.